Польза натуральных продуктов. Витамины, макроэлементы

Значение витаминов. Витамины и их значение

ОБЩИЕ СВЕДЕНИЯ

Витамины представляют собой химические соединения, которые оказывают разностороннее и существенное влияние на жизнедеятельность организма. По своему составу витамины относятся к разнообразным группам органических соединений, некоторые из них имеют очень сложное строение.

Витамины весьма разнообразны по химическому строению. Они являются производными ациклических углеводородов с числом углеродных атомов 18 и 20, ненасыщенных γ-лактонов, аминоспиртов с четвертичным атомом азота, амидов кислот, циклогексана, ароматических кислот, нафтохинонов, имидазола, пиррола, бензпирана, пиридина, пиримидина, тиазола, изоаллоксазина, птеридина и некоторых других циклических систем (В. М. Березовский). Почти все витамины содержат гидроксильную или же карбоксильную группу в своей молекуле и только некоторые содержат аминогруппу.

Основным источником покрытия потребности человека в витаминах являются пищевые продукты, содержащие витамины. Синтез некоторых витаминов, осуществляемых микрофлорой кишечника, незначителен и не может покрыть потребности человека в витаминах.

В некоторых случаях витамины образуются в организме человека в процессе обмена веществ из близких по химическому составу органических веществ, называемых провитаминами. Так, каротин, содержащийся главным образом в растительных продуктах, в организме переходит в витамин А.

Значение витаминов определяется их важной ролью в обменных процессах, происходящих в организме. Их участие в процессах ассимиляции обеспечивает поддержание постоянного нормального состава тканей и органов, а также их функций.

Нормальный состав тканей и органов предполагает обязательное содержание в них витаминов в определенных количественных соотношениях как между собой, так и с белками, жирами, углеводами, минеральными солями и водой.

Поскольку витамины служат в той или иной степени стимуляторами процессов ассимиляции, роль их в обмене веществ является весьма существенной; они обеспечивают своевременное восстановление веществ, подвергшихся разрушению в процессе диссимиляции. В тех случаях, когда по тем или иным причинам снижается поступление в организм витаминов, ассимиляторные реакции, происходящие в связи с процессами диссимиляции, идут недостаточно интенсивно и не в полном объеме, в результате чего развиваются дистрофические явления; при длительном, затяжном течении эти нарушения перерастают в столь значительную патологию, что речь идет уже об авитаминозном состоянии (Б. А. Лавров).

В период роста и развития организма, а также реконвалесценцин процесс ассимиляции протекает наиболее интенсивно, вследствие чего и потребность в витаминах повышается.

В качестве примера влияния витаминов на течение обменных процессов можно привести следующее: установлено, что при добавочном включении в рацион кормящих женщин витамина С повышается не только его содержание в грудном молоке, но и увеличивается содержание жира. Белки женского молока содержат две основные фракции - казеиновую и неказеиновую. Неказеиновая фракция является более ценной для грудного ребенка. При низком уровне витамина С казеиновая фракция белка преобладает над неказеиновой, что приближает женское молоко по своему белковому составу к коровьему, т. е. снижает его питательную ценность для ребенка. После проведения С-витамипизацни неказеиновая фракция молока снова преобладает над казеиновой, и соотношение белковых фракций женского молока становится нормальным. Следовательно, добавление витамина С к пищевому рациону нормализует функцию молочной железы женщины (В. А. Богданова).

Значение витаминов в обмене веществ находится в прямой связи с тем, что многие из них, прежде всего витамины группы В, входят в состав ферментов в виде коферментов, которые катализируют процессы превращения белков, жиров и углеводов.

В настоящее время известно более 100 ферментов, в составе которых содержатся витамины, и очень большое число обменных реакций, катализируемых витаминами. Биохимическая функция каждого витамина может быть многообразной. В качестве примера можно указать на витамин В 6 (пиридоксин); его производное фосфопиридоксаль входит в состав активной группы аминофераз, участвующих в процессах переамннирования. Кроме того, фосфопиридоксаль является коферментом декарбоксилаз и участвует в декарбоксилировании аминокислот. Далее оказалось, что фосфопиридоксаль играет роль кофермента в превращениях триптофана, а также ряда серусодержащих аминокислот. Таким образом, коферментная группа, включающая витамин В 6 , участвует в разных реакциях превращения аминокислот.

Ферментная функция многих витаминов не может полностью объяснить механизм их действия в условиях целостного организма, контролируемого центральной нервной системой. Кроме того, до настоящего времени неизвестно, в каких энзиматических процессах участвуют витамины С, A, D, Е и некоторые другие.

Известен ряд общих черт в физиологическом действии витаминов: их влияние на процессы роста и регенерации тканей, на интенсивность обменных процессов в организме, наличие при многих авитаминозах трофических расстройств, положительный эффект от применения витаминов при ряде нарушений со стороны нервной системы и др.

Примером стимуляции витаминами процессов регенерации могут служить экспериментальные исследования (С. В. Андреев, А. А. Значкова), показавшие ускорение восстановления травмированных нервов у крыс при добавлении к их рациону витаминов группы В, из которых наибольшее стимулирующее влияние оказал витамин В 12 . Было отмечено, что применявшиеся витамины способствовали также «новообразованию моторных бляшек в скелетных мышцах, окружающих место повреждения, что, по-видимому, имеет важное значение для быстрой реиннервации мышц и усиления компенсаторных механизмов, восстанавливающих функцию конечностей».

Эти экспериментальные данные получили подтверждение в клинических наблюдениях (Н. Н. Приоров и Т. И. Черкасова, К. М. Винцентини и М. П. Гиршман). Было установлено, что витамин В 12 стимулирует "регенерацию сшитого нерва и способствует более совершенному восстановлению функции травмированной конечности, уменьшая центральный компонент травмы нерва в более ранние сроки после операции и приводя к ликвидации его симптомов в миограмме в более поздпие сроки после операции".

Другим примером стимулирующего действия витаминов на регенеративные процессы может служить выявленное в эксперименте влияние витаминов С и Р, их комплексного препарата галаскорбнна на заживление переломов костей; введенный животному галаскорбин (аскорбиновая кислота и гпдролизованный танин) сокращает сроки заживления переломов костей и повышает биохимические свойства костных регенератов (Д. С. Ващук).

Значительный интерес представляют исследования, показывающие влияние витаминов на высшую нервную деятельность. Было установлено, что недостаточность в пищевом рационе ряда витаминов группы В существенно меняет условиорефлекторную деятельность подопытных животных. При недостатке витамина В 1 было обнаружено ослабление процессов возбуждения и преобладание процессов торможения в коре больших полушарий (А. О. Зевальд). Рибофлавин имеет большое значение для регуляции корковых процессов и для нейротрофической функции организма. РР-витаминная недостаточность также проявлялась в возникновении невроза у подопытной собаки со слабым типом нервной системы и разлитого охранительного торможения у собаки сильного типа (В. В. Ефремов с соавторами).

Недостаток витамина В 6 в питании у животных (крыс) приводил к развитию невротического состояния (С. А. Косенко). По мере развития недостаточности в фолиевой кислоте у животных наступало резкое усиление тормозного процесса. Уровень условных и безусловных рефлексов снижался, нарушались силовые отношения (В. В. Ефремов с соавторами).

Аналогичные данные получены при изучении влияния А-гиповитаминоза на условнорефлекторную деятельность подопытных животных (Р. М. Мамиш). Недостаток витамина А в пище существенно изменял функциональное состояние коры головного мозга и приводил к резко выраженным нарушениям корковой деятельности под влиянием воздействий, которые являются совершенно адекватными для нормальных животных.

Изложенные наблюдения позволяют В. В. Ефремову прийти к выводу, что динамика корковых процессов и одновременное изучение обмена витаминов могут быть объективными показателями для диагностики витаминной недостаточности. Таким образом, витамины, принимая большое участие в ферментативных реакциях, активно воздействуя на различные стороны процесса обмена веществ, оказывают регулирующее влияние на функциональное состояние систем и органов человека.

ВИТАМИНЫ И ОБМЕН ВЕЩЕСТВ

Обмен белка .

Большинство витаминов (особенно группы В) оказывает активное воздействие на обмен белка в организме. Витамин В 1 принимает участие в переаминировании аминокислот (А. Е. Браунштейн с сотрудниками), регулирует азотистый обмен в организме (Б. А. Лавров, Н. С. Ярусова) и обмен нуклеотидов (В. А. Энгельгардт с сотрудниками).

Витамин В 2 способствует синтезу белков в организме. Он входит в состав ферментов, участвующих в окислительном дезаминировании аминокислот. При недостатке витамина В 2 в пище понижается усвоение белка. С другой стороны, повышение содержания белка в пищевом рационе способствует лучшему усвоению этого витамина (Sarett, Klein, Perlzweig).

При недостатке белка в рационе питания повышается выведение никотиновой кислоты и продуктов ее обмена с мочой. Вместе с тем обогащение пищи никотиновой кислотой повышает использование организмом белка кукурузы и ряда зерновых продуктов, содержащих недостаточное количество триптофана или никотиновой кислоты или обоих веществ. Витамин Be играет важную роль во всех реакциях синтеза и обмена аминокислот в организме.

Витамин В 12 принимает участие в обмене одноуглеродиых групп из эндогенных источников, способствует более быстрому использованию аминокислот для синтеза белка. Витамин В 12 стимулирует образование нуклеиновых кислот, в частности рибонуклеиновой кислоты.

Витамин С также оказывает влияние на некоторые процессы в межуточном обмене белков. Так, при введении морским свинкам тирозина (или фенилаланина) при диете, бедной витамином С, у животных возникала алкаптонурия. (Алкаптонурня - заболевание, при котором моча приобретает темный цвет от присутствия в ней гомогентизиновой кислоты.) Добавление к пище витамина С ликвидировало алкаптонурию: выделение гомогентизиновой кислоты прекращалось и моча приобретала нормальный цвет, несмотря на продолжавшуюся нагрузку тирозином. Следовательно, при недостатке витамина С в организме нарушается обмен тирозина и фенилаланина.

Витамин А, по-видимому, влияет на синтез гликокола и тем способствует выделению из организма солей бензойной кислоты и других токсичных соединений (Meunier et al.).

Витамин Е стимулирует синтез нуклеопротеидов, способствует лучшему использованию организмом белков, оказывает защитное действие на белки, предохраняя их от расщепления. Это свойство витамина Е связано с его тормозящим действием на ферменты, расщепляющие белки (Zierler et al.).

Жировой и холестериновый обмен

Витамин B 1 способствует образованию жиров из белков при одностороннем белковом питании, однако в этом процессе необходимо участие также витамина В 6 . Витамин В 2 и пантотеновая кислота усиливают упомянутое действие витамина В 1 . Витамин В 2 играет важную роль в усвоении и синтезе жиров в организме. Имеются данные о положительном влиянии больших доз никотиновой кислоты на обмен холестерина. Отмечено снижение гиперхолестеринемии улиц, получавших от 3 до 6 г никотиновой кислоты в сутки, однако механизм действия никотиновой кислоты на гиперхолестеринемию у этих лиц остается неясным. Витамин В 6 способствует лучшему использованию организмом ненасыщенных жирных кислот и, по-видимому, синтезу арахидоновой кислоты. Согласно экспериментальным данным, витамин В 6 снижает гиперхолестеринемию и ограничивает развитие липоидоза сосудов н аорты у животных, получавших холестерин.

Витамин В 12 обладает липотропным действием и предупреждает жировую инфильтрацию печени. Витамин В 12 в эксперименте вызывал благоприятные сдвиги в обмене холестерина у кроликов с холестериновым атеросклерозом: снижалось содержание холестерина в крови, повышался фосфатидо-холестериновый коэффициент и уменьшался липоидоз аорты. Липотропное действие витамина В 12 , видимо, объясняется его ролью в синтезе метионина.

Холин также снижал гиперхолестерииемню при экспериментальном склерозе и способствовал устранению липоидных отложений в венечных артериях и аорте.

Витамин А при длительном и избыточном потреблении повышает содержание холестерина в крови. Вместе с тем у старых кур уменьшались содержание жира и количество и размеры атеросклеротических бляшек в аорте, а содержание холестерина в аорте мало изменялось (Weitzel и др.). При одновременном введении витамина Е указанное действие витамина А усиливалось. С. М. Рысс, Schettler предполагают, что гиперхолестерннемия после введения больших доз витамина А вызывается усиленным выделением холестерина из различных органов - мозга, печени и др.

Витамин С при однократном и длительном введении значительно снижает гиперхолестеринемию (А. Л. Мясников).

Углеводный обмен

Декарбоксилирование пировиноградиой кислоты и карбоксилирование происходят под воздействием производного витамина В 1 -дифосфотиамина, называемого также кокарбоксилазой, который является коэнзимом и действует в качестве катализатора на обмен пировиноградной кислоты.

При недостаточном поступлении с пищей витамина B 1 пировиноградная кислота не расщепляется, значительно повышается ее содержание в крови и тканях. Одновременно возникают резкие функциональные нарушения в нервной системе. После введения в организм витамина B 1 активируется деятельность карбоксилазы, восстанавливается способность ткани окислять пировиноградную кислоту; наблюдающиеся расстройства функций со стороны центральной и периферической нервной системы проходят, а использование организмом углеводов улучшается. Поэтому для лучшего использования организмом углеводов, особенно при высоком их содержании в пищевом рационе, необходимо вводить в повышенном количестве витамин В 1 .

Витамин В 2 , как и витамин В 1 , а также никотиновая кислота входят в состав ферментной системы, регулирующей окислительно-восстановительные процессы в организме. Окисление молочной кислоты в пировипоградную и расщепление последней до углекислоты и воды происходят при участии всех трех упомянутых витаминов.

Витамин В 12 способствует образованию глютатиоиа и сульфгидрнльных ферментов, которые необходимы для процессов гликолиза. При недостатке витамина В 12 ухудшается усвоение углеводов, что зависит от пониженного содержания в крови и тканях глютатнона. Витамин В 12 и глютатион стимулируют активность сульфгидрильных ферментов в углеводном обмене.

Пантотеновая кислота входит в состав ферментной системы, регулирующей обмен пнровиноградной кислоты. Введение кролику пантотеновой кислоты после нагрузки сахаром понижает гипергликемическую кривую, что указывает на улучшение усвоения глюкозы.

Минеральный обмен

Многие микроэлементы активно участвуют в синтезе некоторых витаминов, способствуют использованию организмом витаминов. Установлена определенная взаимосвязь между витамином В 1 и марганцем. Марганец действует в качестве окислительного катализатора прй использовании витамина В 1 в тканях. Явления интоксикации, наблюдавшиеся при введении больших доз витамина В 1 ликвидировались после введения марганца в небольших количествах.

При С-витамннной недостаточности в эксперименте наблюдается накопление меди в печени и особенно в костной ткани. Введение морским свинкам аскорбиновой кислоты снижает содержание меди в этих тканях. Медь играет важную роль в образовании гемоглобина и созревании эритроцитов. Недостаток меди ведет к развитию анемии.

Витамин D регулирует обмен кальция и фосфора в организме. Недостаток витамина D ведет к резкому нарушению кальциево-фосфорного обмена и развитию у детей рахита. Влияние витамина D на обмен кальция используется для стимуляции образования костной мозоли при костных переломах.

Имеются наблюдения, установившие, что дрожжевые белки способствуют развитию некроза печени у подопытных животных (крыс и цыплят), однако некроз можно предупредить, если ввести в пищу селен или повысить в пищевом рационе содержание витамина Е. Таким образом, витамин Е и селен обладают в некоторых случаях сходным действием.

Недостаток витамина А в организме приводит к накоплению в тканях фосфора, кальция и калия. В эксперименте на крысах не было установлено каких-либо изменений в содержании в тканях натрия, калия и хлора при парентеральном введении малых доз витамина А. При введении больших доз наблюдалось падение содержания внутриклеточного калия и увеличение содержания в тканях хлора. Предполагают, что снижение содержания калия связано с жировым перерождением клеток в результате введения больших доз витамина А, а увеличение содержания хлора - дегеративными изменениями в почках.

Приведенные данные о взаимосвязи обмена витаминов с обменом белков, жиров, углеводов и минеральных солей дают лишь общее представление по данному вопросу. Более детально эти сведения приводятся в главах, посвященных каждому витамину в отдельности.

Введение

1 Витамины

1.1 История открытия витаминов

1.2 Понятие и основные признаки витаминов

1.3 Обеспечение организма витаминами

2.1 Жирорастворимые витамины

2.2 Водорастворимые витамины

2.3 Группа витаминоподобных веществ

Заключение

Список используемой литературы


Введение

Трудно представить, что такое широко известное слово как «витамин» вошло в наш лексикон только в начале XX века. Теперь известно, что в основе жизненно важных процессов обмена веществ в организме человека принимают участие витамины. Витамины - жизненно важные органические соединения, необходимые для человека и животных в ничтожных количествах, но имеющие огромное значение для нормального роста, развития и самой жизни.

Витамины обычно поступают с растительной пищей или с продуктами животного происхождения, поскольку они не синтезируются в организме человека и животных. Большинство витаминов являются предшественниками коферментов, а некоторые соединения выполняют сигнальные функции.

Суточная потребность в витаминах зависит от типа вещества, а также от возраста, пола и физиологического состояния организма. В последнее время представления о роли витаминов в организме обогатились новыми данными. Считается, что витамины могут улучшать внутреннюю среду, повышать функциональные возможности основных систем, устойчивость организма к неблагоприятным факторам.

Следовательно, витамины рассматриваются современной наукой как важное средство общей первичной профилактики болезней, повышения работоспособности, замедления процессов старения.

Целью данной работы является всестороннее изучение и характеристика витаминов.

Работа состоит из введения, двух глав, заключения и списка литературы. Общий объем работы 21 страницы.


1 Витамины

1.1 История открытия витаминов

Если заглянуть в книги, изданные в конце прошлого столетия, можно убедиться, что в то время наука о рациональном питании предусматривала включение в рацион белков, жиров, углеводов, минеральных солей и воды. Считалось, что пища, содержащая эти вещества, полностью удовлетворяет все потребности организма, и таким образом, вопрос о рациональном питании казался разрешенным. Однако наука XIX столетия находилась в противоречии многовековой практикой. Жизненный опыт населения различных стран показывал, что существует ряд болезней, связанных с питанием и встречающихся часто среди людей, в пище которых не отмечалось недостатка белков, жиров, углеводов и минеральных солей.

Врачи-практики давно предполагали, что существует прямая связь между возникновением некоторых болезней (например, цинги, рахита, бери-бери, пеллагры) и характером питания. Что же привело к открытию витаминов – этих веществ, обладающих чудесными свойствами предупреждать и излечивать тяжелые болезни качественной пищевой недостаточности?

Начало изучения витаминов было положено русским врачом Н.И.Луниным, который еще в 1888 г. установил, что для нормального роста и развития животного организма, кроме белков, жиров, углеводов, воды и минеральных веществ, необходимы еще какие-то, пока неизвестные науке вещества, отсутствие которых приводит организм к гибели.

Доказательство существования витаминов завершилось работой польского учёного Казимира Функа, который в 1912 г. выделил из рисовых отрубей вещество, излечивающее паралич голубей, питавшихся только полированным рисом (бери-бери – так называли это заболевание у людей стран Юго-Восточной Азии, где население питается преимущественно одним рисом). Химический анализ выделенного К.Функом вещества показал, что в его состав входит азот. Открытое им вещество Функ назвал витамином (от слов «вита» – жизнь и «амин» – содержащий азот).

Правда, потом оказалось, что не все витамины содержат азот, но старое название этих веществ осталось. В наши дни принято обозначать витамины их химическими названиями: ретинол, тиамин, аскорбиновая кислота, никотинамид, – соответственно А, В, С, РР.

1.2 Понятие и основные признаки витаминов

С точки зрения химии, витамины - это группа низкомолекулярных веществ различной химической природы, обладающих выраженной биологической активностью и необходимых для роста, развития и размножения организма.

Витамины образуются путем биосинтеза в растительных клетках и тканях. Обычно в растениях они находятся не в активной, но высокоорганизованной форме, которая, по данным исследований, наиболее подходит человеческому организму, а именно – в виде провитаминов. Их роль сводится к полному, экономичному и правильному использованию основных питательных веществ, при котором органические вещества пищи высвобождают необходимую энергию.

Только немногие из витаминов, такие, как A, D, Е, В12, могут накапливаться в организме. Недостаток витаминов вызывает тяжелые расстройства.

Основные признаки витаминов:

Либо не синтезируются в организме вообще, либо синтезируются в незначительных количествах микрофлорой кишечника;

Не выполняют пластических функций;

Не являются источниками энергии;

Являются кофакторами многих ферментативных систем;

Оказывают биологическое действие в малых концентрациях и влияют на все обменные процессы в организме, требуются организму в очень небольших количествах: от нескольких мкг до нескольких мг в день..

Известны разные степени необеспеченности организма витаминами:

авитаминозы - полное истощение запасов витаминов;

гиповитаминозы - резкое снижение обеспеченности тем или иным витамином;

гипервитаминозы - избыток витаминов в организме.

Вредны все крайности: как недостаток, так и избыток витаминов, так как при избыточном потреблении витаминов развивается отравление (интоксикация). Явление гипервитаминоза касается лишь витаминов А и D, избыточное количество большинства других витаминов быстро выводится из организма с мочой. Но есть еще так называемая субнормальная обеспеченность, которая связана с дефицитом витаминов и проявляется она в нарушении обменных процессов в органах и тканях, но без явных клинических признаков (например, без видимых изменений в состоянии кожи, волос и других внешних проявлений). Если такая ситуация регулярно повторяется по разным причинам, то это может привести гипо- или авитаминозу.

1.3 Обеспечение организма витаминами

При нормальном питании суточная потребность организма в витаминах удовлетворяется полностью. Недостаточное, неполноценное питание или нарушение процессов усвоения и использования витаминов могут быть причиной различных форм витаминной недостаточности.

Причины истощения запасов витаминов в организме:

1) Качество продуктов и их приготовление:

Несоблюдение условий хранения по времени и температуре;

Нерациональная кулинарная обработка (например, длительная варка мелко нарезанных овощей);

Присутствие антивитаминных факторов в продуктах питания (капуста, тыква, петрушка, зеленый лук, яблоки содержат ряд ферментов, разрушающих витамин С, особенно при мелкой резке)

Разрушение витаминов под влиянием ультрафиолетовых лучей, кислорода воздуха (например, витамина А).

2) Важная роль в обеспечении организма рядом витаминов принадлежит микрофлоре пищеварительного тракта:

При многих распространенных хронических заболеваниях нарушается всасывание или усвоение витаминов;

Сильные кишечные расстройства, неправильный прием антибиотиков и сульфаниламидных препаратов приводят к созданию определенного дефицита витаминов, которые могут синтезироваться полезной микрофлорой кишечника (витамины В12, В6, Н (биотин)).

Суточная потребность в витаминах и их основные функции

Витамин

Суточная

потребность

Функции Основные источники
Аскорбиновая кислота (С) 50-100 мг Участвует в окислительно-вос-становительных процессах, повы-шает сопротивляемость организма к экстремальным воздействиям Овощи, фрукты, ягоды. В капусте - 50 мг. В шиповнике - 30-2000 мг.
Тиамин, аневрин (В1) 1,4-2,4 мг Необходим для нормальной деятельности центральной и периферической нервной системы Пшеничный и ржаной хлеб, крупы – овсяная, горох, свинина, дрожжи, кишечная микрофлора.
Рибофлавин (В2) 1,5-3,0 мг Участвует в окислительно-восстановительных реакциях Молоко, творог, сыр, яй-цо, хлеб, печень, овощи, фрукты, дрожжи.
Пиридоксин (В6) 2,0-2,2 мг Участвует в синтезе и метаболиз-ме аминокислот, жирных кислот и ненасыщенных липидов Рыба, фасоль, пшено, картофель
Никотиновая кислота (РР) 15,0-25,0 мг Участвует в окислительно-восста-новительных реакциях в клетках. Недостаточность вызывает пеллагру Печень, почки, говядина, свинина, баранина, рыба, хлеб, крупы, дрожжи, кишечная микрофлора
Фолиевая кислота, фолицин (Вс) 0,2-0,5 мг Кроветворный фактор, участвует в синтезе аминокислот, нуклеиновых кислот Петрушка, салат, шпи-нат, творог, хлеб, печень
Цианкобаламин (В12) 2-5 мг Участвует в биосинтезе нуклеино-вых кислот, фактор кроветворения Печень, почки, рыба, говядина, молоко, сыр
Биотин (Н) 0,1-0,3 мг Участвует в реакциях обмена аминокислот, липидов, углеводов, нуклеиновых кислот Овсяная крупа, горох, яйцо, молоко, мясо, печень
Пантотеновая кислота (В3) 5-10 мг Участвует в реакциях обмена белков, липидов, углеводов Печень, почки, гречка, рис, овес, яйца, дрожжи, горох, молоко, кишечная микрофлора
Ретинол (А) 0,5-2.5 мг Участвует в деятельности мемб-ран клеток. Необходим для роста и развития человека, для функцио-нирования слизистых оболочек. Участвует в процессе фоторецепции - восприятии света Рыбий жир, печень трески, молоко, яйца, сливочное масло
Кальциферол (D) 2,5-10 мкг Регуляция содержания кальция и фосфора в крови, минерализация костей, зубов

Рыбий жир, печень, молоко, яйца

В настоящее время известны около 13 витаминов, которые вместе с белками, жирами и углеводами должны присутствовать в рационе людей и животных для обеспечения нормальной жизнедеятельности витаминов. Кроме того, существует группа витаминоподобных веществ , которые обладают всеми свойствами витаминов, но не являются строго обязательными компонентами пищи.

Соединения, которые не являются витаминами, но могут служить предшественниками их образования в организме, называются провитаминами . К ним относятся, например, каротины, расщепляющиеся в организме с образованием витамина А, некоторые стерины (эргостерин, 7-дегидрохолестерин и др.), превращающиеся в витамин D.

Ряд витаминов представлен не одним, а несколькими соединениями, обладающими сходной биологической активностью (витамеры), например витамин В6 включает пиридоксин, пиридоксаль и пиридоксамин. Для обозначения подобных групп родственные соединения используют слово «витамин» с буквенными обозначениями (витамин А, витамин Е и т.п.).

Для индивидуальных соединений, обладающих витаминной активностью, используются рациональные названия, отражающие их химическую природу, например ретиналь (альдегидная форма витамина А), эргокальциферол и холекалыдиферол (формы витамина D).

Таким образом, наряду с жирами, белками, углеводами и минеральными солями, необходимый комплекс для поддержания жизнедеятельности человека включает пятый, равноценный по своей значимости компонент - витамины. Витамины принимают самое непосредственное и активное участие во всех обменных процессах жизнедеятельности организма, а также входят в состав многих ферментов, выполняя роль катализаторов.

2 Классификация и номенклатура витаминов

Так как к витаминам относится группа веществ различной химической природы, то классификация их по химическому строению сложна. Поэтому классификация проводится по растворимости в воде или органических растворителях. В соответствие с этим витамины делятся на водорастворимые и жирорастворимые.

1) К водорастворимым витаминам относят:

B1 (тиамин) антиневритный;

B2 (рибофлавин) антидерматитный;

B3 (пантотеновая кислота) антидерматитный;

B6 (пиридоксин, пиридоксаль, пиридоксамин) антидерматитный;

B9 (фолиевая кислота; фолацин) антианемический;

B12 (цианкобаламин) антианемический;

PP (никотиновая кислота; ниацин) антипеллагрический;

H (биотин) антидерматитный;

C (аскорбиновая кислота) антицинготный – участвуют в структуре и функционировании ферментов.

2) К жирорастворимым витаминам относят:

А (ретинол) антиксерофтальмический;

D (кальциферолы) антирахитический;

E (токоферолы) антистерильный;

К (нафтохинолы) антигеморрагический;

Жирорастворимые витамины входят в структуру мембранных систем, обеспечивая их оптимальное функциональное состояние.

В химическом отношении жирорастворимые витамины А, D, E и К относятся к изопреноидам.

3) следующая группа: витаминоподобные вещества. К ним обычно относят витамины:В13 (оротовая кислота), В15 (пангамовая кислота), В4 (холин), В8 (инозитол), Вт (карнитин), H1 (параминбензойная кислота), F (полинасыщенные жирные кислоты), U (S=метилметионин-сульфат-хлорид).

Номенклатура (название) основана на использовании заглавных букв латинского алфавита с нижним цифровым индексом. Кроме того, в названии используются наименования, отражающие химическую природу и функцию витамина.

Витамины стали известны человечеству не сразу, и в течение многих лет ученым удавалось открывать новые виды витаминов, а также новые свойства этих полезных для человеческого организма веществ. Поскольку языком медицины во всем мире является Латынь, то и витамины обозначались именно латинскими буквами, а в дальнейшем и цифрами.

Присвоение витаминам не только букв, но и цифр объясняется тем, что витамины приобретали новые свойства, обозначить которые при помощи цифр в названии витамина, представлялось наиболее простым и удобным. Для примера, можно рассмотреть популярный витамин «В». Так, на сегодняшний день, этот витамин может быть представлен в самых разных областях, и во избежание путаницы он именуется от «витамин В1» и вплоть до «витамина В14». Аналогично именуются и витамины входящие в эту группу, например, «витамины группы В».

Когда химическая структура витаминов была определена окончательно, стало возможным именовать витамины в соответствии с терминологией, принятой в современной химии. Так в обиход вошли такие названия, как пиридоксаль, рибофлавин, а также птероилглутаминовая кислота. Прошло еще какое то время, и стало совершенно ясно, что многие органические вещества, уже давным-давно известные науке, также обладают свойствами витаминов. Причем таких веществ оказалось достаточно много. Из наиболее распространенных можно упомянуть никотинамид, лгезоинозит, ксантоптерин, катехин, гесперетин, кверцетин, рутин, а также ряд кислот, в частности, никотиновую, арахидоновую, линоленовую, линолевую, и некоторые другие кислоты.

2.1 Жирорастворимые витамины

Витамин А (ретинол) является предшественником группы «ретиноидов », к которой принадлежат ретиналь и ретиноевая кислота. Ретинол образуется при окислительном расщеплении провитамина β-каротина. Ретиноиды содержатся в животных продуктах, а β-каротин - в свежих фруктах и овощах (в особенности в моркови). Ретиналь обуславливает окраску зрительного пигмента родопсина. Ретиноевая кислота выполняет функции ростового фактора.


При недостатке витамина А развиваются ночная («куриная») слепота, ксерофтальмия (сухость роговой оболочки глаз), наблюдается нарушение роста.

Витамин D (кальциферол) при гидроксилировании в печени и почках образует гормон кальцитриол (1α,25-дигидроксихолекальциферол). Вместе с двумя другими гормонами (паратгормоном, или паратирином, и кальцитонином) кальцитриол принимает участие в регуляции метаболизма кальция. Кальциферол образуется из предшественника 7-дегидрохолестерина, присутствующего в коже человека и животных, при облучении ультрафиолетовым светом.

Если УФ-облучение кожи недостаточно или витамин D отсутствует в пищевых продуктах, развивается витаминная недостаточность и, как следствие, рахит у детей, остеомаляция (размягчение костей) у взрослых. В обоих случаях нарушается процесс минерализации (включения кальция) костной ткани.

Витамин Ε включает токоферол и группу родственных соединений с хромановым циклом. Такие соединения содержатся только в растениях, особенно их много в проростках пшеницы. Для ненасыщенных липидов эти вещества являются эффективными антиоксидантами.

Витамин К - общее название группы веществ, включающей филлохинон и родственные соединения с модифицированной боковой цепью. Недостаток витамина К наблюдается довольно редко, так как эти вещества вырабатываются микрофлорой кишечника. Витамин К принимает участие в карбоксилировании остатков глютаминовой кислоты белков плазмы крови, что важно для нормализации или ускорения процесса свертывания крови. Процесс ингибируется антагонистами витамина К (например, производными кумарина), что находит применение как один из методов лечения тромбозов.

2.2 Водорастворимые витамины

Витамин B1 (тиамин) построен из двух циклических систем - пиримидина (шестичленный ароматический цикл с двумя атомами азота) и тиазола (пятичленный ароматический цикл, включающий атомы азота и серы), соединенных метиленовой группой. Активной формой витамина Β1 является тиаминдифосфат (ТРР), выполняющий функцию кофермента при переносе гидроксиалкильных групп («активированных альдегидов»), например, в реакции окислительного декарбоксилирования α-кетокислот, а также в транскетолазной реакций гексозомонофосфатного пути. При недостатке витамина Β1 развивается болезнь бери-бери , признаками которой являются расстройства нервной системы (полиневриты), сердечнососудистые заболевания и мышечная атрофия.

Витамин B2 - комплекс витаминов, включающий рибофлавин, фолиевую, никотиновую и пантотеновую кислоты. Рибофлавин служит структурным элементом простетических групп флавинмононуклеотида [ФМН (FMN)] и флавинадениндинуклеотида [ФАД (FAD)]. ФМН и ФАД являются простетическими группами многочисленных оксидоредуктаз (дегидрогеназ), где выполняют функцию переносчиков водорода (в виде гидрид-ионов).

Молекула фолиевой кислоты (витамин B9, витамин Вc, фолацин, фолат) включает три структурных фрагмента: производное птеридина, 4-аминобензоат и один или несколько остатков глутаминовой кислоты. Продукт восстановления фолиевой кислоты - тетрагидрофолиевая (фолиновая) кислота [ТГФ (THF)] - входит в состав ферментов, осуществляющих перенос одноуглеродных фрагментов (С1-метаболизм).



Рисунок 2 – Жирорастворимые витамины

Дефицит фолиевой кислоты встречается довольно часто. Первым признаком дефицита является нарушение эритропоэза (мегалобластическая анемия). При этом тормозятся синтез нуклеопротеидов и созревание клеток, появляются аномальные предшественники эритроцитов - мегалоциты. При остром недостатке фолиевой кислоты развивается генерализованное поражение тканей, связанное с нарушением синтеза липидов и обмена аминокислот.

В отличие от человека и животных микрοорганизмы способны синтезировать фолиевую кислоту de novo . Потому рост микроорганизмов подавляется сульфаниламидными препаратами, которые как конкурентные ингибиторы блокируют включение 4-аминобензойной кислоты в биосинтез фолиевой кислоты. Сульфаниламидные препараты не могут оказывать воздействия на метаболизм жинотных организмов, поскольку они не способны синтезировать фолиевую кислоту.

Никотиновая кислота (ниацин) и никотинамид (ниацинамид) (оба известны как витамин Β5, витамин РР) необходимы для биосинтеза двух коферментов - никотинамидадениндинуклеотида [НАД+ (NAD+)] и никотинамидадениндинуклеотидфосфата [НАДФ+ (NADP+)]. Главная функция этих соединений, состоящая в переносе гидрид-ионов (восстановительных эквивалентов), обсуждается в разделе, посвященном метаболическим процессам. В животных организмах никотиновая кислота может синтезироваться из триптофана , однако биосинтез идет с низким выходом. Поэтому витаминный дефицит наступает лишь в том случае, если в рационе одновременно отсутствуют все три вещества: никотиновая кислота, никотинамид и триптофан. Заболевания. связанные с дефицитом ниацина, проД являются поражением кожи (пеллагра ), расстройством желудка и депрессией.

Пантотеновая кислота (витамин B3) представляет собой амид α,γ-дигидрокси-β,β-диметилмасляной кислоты (пантоевой кислоты) и β-аланина. Соединение необходимо для биосинтеза кофермента А [КоА (СоА)] принимающего участие в метаболизме мнотих карбоновых кислот. Пантотеновая кислота также входит в состав простетической группы ацилпереносящего белка (АПБ). Поскольку пантотеновая кислота входит в состав многих пищевых продуктов, авитаминоз из-за дефицита витамина В3 встречается редко.

Витамин В6 - групповое название трех производных пиридина: пиридоксаля, пиридоксина и пиридоксамина . На схеме приведена формула иридоксаля, где в положении при С-4 стоит альдегидная группа (-СНО); в пиридоксине это место занимает спиртовая группа (-CH2OH); а в пиридоксамине - метиламиногруппа (-CH2NН2). Активной формой витамина В6 является пиридоксаль-5-фосфат (PLP), важнейший кофермент в метаболизме аминокислот. Пиридоксальфосфат входит также в состав гликоген-фосфорилазы, принимающей участие в расщеплении гликогена. Дефицит витамина В6 встречается редко.



Рисунок 2 – Жирорастворимые витамины

Витамин В12 (кобаламины; лекарственная форма - цианокобаламин ) - комплексное соединение, имеющее в основе цикл коррина и содержащее координационно связанный ион кобальта. Этот витамин синтезируется лишь в микроорганизмах. Из пищевых продуктов он содержится в печени, мясе, яйцах, молоке и полностью отсутствует в растительной пище (на заметку вегетарианцам!). Витамин всасывается слизистой желудка только в присутствии секретируемого (эндогенного) гликопротеина, так называемого внутреннего фактора. Назначение этого мукопротеида заключается в связывании цианокобаламина и тем самым в защите от деградации. В крови цианокобаламин также связывается специальным белком, транскобаламином. В организме витамин В12 запасается в печени.



Рисунок 2 – Жирорастворимые витамины

Производные цианокобаламина являются коферментами, принимающими участие, например, в конверсии метилмалонил-КоА в сукцинил-КоА, биосинтезе метионина из гомоцистеина. Производные цианокобаламина принимают участие в восстановлении рибонуклеотидов бактериями до дезоксирибонуклеотидов.

Витаминный дефицит или нарушение всасывания витамина В12 связаны главным образом с прекращением секреции внутреннего фактора. Следствием авитаминоза является пернициозная анемия.

Витамин С (L-аскорбиновая кислота) представляет собой γ-лактон 2,3-дегидрогулоновой кислоты. Обе гидроксильные группы имеют кислотный характер, в связи с чем при потере протона соединение может существовать в форме аскорбат-аниона . Ежедневное поступление аскорбиновой кислоты необходимо человеку, приматам и морским свинкам, поскольку у этих видов отсутствует фермент гулонолактон-оксидаза (КФ 1.1.3.8), катализирующий последнюю стадию конверсии глюкозы в аскорбат.

Источником витамина С являются свежие фрукты и овощи. Аскорбиновую кислоту добавляют во многие напитки и пищевые продукты в качестве антиоксиданта и вкусовой добавки. Витамин С медленно разрушается в воде. Аскорбиновая кислота в качестве сильного восстановителя принимает участие во многих реакциях (главным образом в реакциях гидроксилирования).

Из биохимических процессов с участием аскорбиновой кислоты следует упомянуть синтез коллагена, деградацию тирозина, синтезы катехоламина и желчных кислот. Суточная потребность в аскорбиновой кислоте составляет 60 мг - величина, не характерная для витаминов. Сегодня дефицит витамина С встречается редко. Дефицит проявляется спустя несколько месяцев в форме цинги (скорбута). Следствием заболевания являются атрофия соединительных тканей, расстройство системы кроветворения, выпадение зубов.

Витамин H (биотин) содержится в печени, яичном желтке и других пищевых продуктах; кроме того, он синтезируется микрофлорой кишечника. В организме биотин (через ε-аминогруппу остатка лизина) связан с ферментами, например с пируваткарбоксилазой (КФ 6.4.1.1), катализирующими реакцию карбоксилирования. При переносе карбоксильной группы два N-атома молекулы биотина в АТФ-зависимой реакции связывают молекулу СО2 и переносят ее на акцептор. Биотин с высоким сродством (Kd = 10 - 15 М) и специфичностью связывается авидином белка куриного яйца. Так как авидин при кипячении денатурируется, дефицит витамина H может наступить только при употреблении в пищу сырых яиц.

2.3 Группа витаминоподобных веществ

Помимо вышеназванных двух главных групп витаминов, выделяют группу разнообразных химических веществ, из которых часть синтезируется в организме, но обладает витаминными свойствами. Организму они необходимы в сравнительно малых количествах, но воздействие на функции организма достаточно сильное. К ним относятся:

Незаменимые пищевые вещества с пластической функцией: холин, инозит.

Биологически активные вещества, синтезируемые в организме человека: липоевая кислота, оротовая кислота, карнитин.

Фармакологически активные вещества пищи: биофлавоноиды, витамин U – метилметионинсульфоний, витамин В15 - пангамовая кислота, факторы роста микроорганизмов, парааминобензойная кислота.

Недавно открыт еще один фактор, названный пирролохинолинохиноном. Известны его коферментные и кофакторные свойства, однако пока не раскрыты витаминные свойства.

Основное отличие витаминоподобных веществ в том, что при их недостатке или переизбытке не возникает в организме различных патологических изменений, характерных для авитаминозов. Содержание витаминоподобных веществ в продуктах питания вполне достаточно для жизнедеятельности здорового организма.

Для современного человека, необходимо знать и о предшественниках витаминов. Источником витаминов, как известно, являются продукты растительного и животного происхождения. Например, витамин А в готовом виде содержится только в продуктах животного происхождения (рыбий жир, цельное молоко и т.д.), а в растительных продуктах только в виде каротиноидов - своих предшественников. Поэтому, поедая морковку мы получаем только предшественника витамина А, из которого в печени вырабатывается сам витамин А. К провитаминам относятся: каротиноиды (основной из них - каротин) - предшественник витамина А; стерины (эргостерин, 7-дегидрохолестерин и др.) - предшественники витамина D;

Заключение

Итак, из истории витаминов мы знаем, что термин «витамин» впервые был использован для обозначения специфического компонента пищи, который предотвращал болезнь Бери-бери, распространенную в странах, где употребляли в пищу много шлифованного риса. Поскольку этот компонент обладал свойствами амина, польский биохимик К.Функ впервые выделивший это вещество, назвал его витамин - необходимый для жизни амин.

В настоящее время витамины можно охарактеризовать как низкомолекулярные органические соединения, которые, являясь необходимой составной частью пищи, присутствуют в ней в чрезвычайно малых количествах по сравнению с основными её компонентами. Витамины - это вещества, обеспечивающее нормальное течение биохимических и физиологических процессов в организме. Витамины - необходимый элемент пищи для человека и ряда живых организмов, т.к. не синтезируются или некоторые из них синтезируются в недостаточном количестве данным организмом.

Первоисточником витаминов являются растения, где преимущественно они образуются, а также провитамины - вещества, из которых витамины могут образовываться в организме. Человек получает витамины или непосредственно из растений, или косвенно - через животные продукты, в которых витамины были накоплены из растительной пищи во время жизни животного.

Витамины делят на две большие группы: витамины растворимые в жирах и витамины, растворимые в воде. В классификации витаминов, помимо буквенного обозначения, в скобках указывается основной биологический эффект, иногда с приставкой «анти», указывающей на способность данного витамина предотвращать или устранять развитие соответствующего заболевания.

К витаминам, растворимых в жирах относят:Витамин A (антиксерофталический), Витамин D (антирахитический), Витамин E (витамин размножения), Витамин K (антигеморрагический)\

К витаминам, растворимых в воде относят: Витамин В1 (антиневритный), Витамин В2 (рибофлавин), Витамин PP (антипеллагрический), Витамин В6 (антидермитный), Пантотен (антидерматитный фактор), Биотит (витамин Н, фактор роста для грибков, дрожжей и бактерий, антисеборейный), Инозит. Парааминобензойная кислота (фактор роста бактерий и фактор пигментации), Фолиевая кислота (антианемический витамин, витамин роста для цыплят и бактерий), Витамин В12 (антианемический витамин), Витамин В15 (пангамовая кислота), Витамин С (антискорбутный), Витамин Р (витамин проницаемости).

Основной особенностью жирорастворимых витаминов является их способность накапливаться в организме так сказать «про запас». Хранится в организме они могут в течении года и расходоваться по мере надобности. Однако слишком большое поступление жирорастворимых витаминов для организма опасно, и может привести к нежелательным последствиям. Водорастворимые витамины не накапливаются в организме и в случае переизбытка легко выводятся с мочой.

Наряду с витаминами, существуют вещества, дефицит которых, в отличие от витаминов, не приводит к явно выраженным нарушениям. Эти вещества относятся к так называемым витаминоподобным веществам :

Сегодня известно 13 низкомолекулярных органических соединений, которые относят к витаминам. Соединения, которые не являются витаминами, но могут служить предшественниками их образования в организме, называются провитаминами . Важнейшим провитамином является предшественник витамина А - бета-каротин.

Значение витаминов для организма человека очень велико. Эти питательные вещества поддерживают работу абсолютно всех органов и всего организма в целом. Нехватка витаминов приводит к общему ухудшению состояния здоровья человека, а не отдельных его органов.

Болезни, которые возникают вследствие отсутствия в пище тех или иных витаминов, стали называться авитаминозами . Если болезнь возникает вследствие отсутствия нескольких витаминов, ее называют поливитаминозом . Чаще приходится иметь дело с относительным недостатком какого-либо витамина; такое заболевание называется гиповитаминозом . Если своевременно поставлен диагноз, то авитаминозы и особенно гиповитаминозы легко излечить введением в организм соответствующих витаминов. Чрезмерное введение в организм некоторых витаминов может вызвать гипервитаминоз .


Список использованных источников

1. Березов, Т.Т. Биологическая химия: Учебник / Т.Т.Березов, Б.Ф.Коровкин. - М.: Медицина, 2000. - 704 с.

2. Габриелян, О.С. Химия. 10 класс: Учебник (базовый уровень) / О.С.Габриелян, Ф.Н.Маскаев, С.Ю.Пономарев и др. - М.: Дрофа.- 304 с.

3. Мануйлов А.В. Основы химии. Электронный учебник / А.В.Мануйлов, В.И.Родионов. [Электронный ресурс]. Режим доступа: http://www.hemi.nsu.ru/

4. Химическая энциклопедия [Электронный ресурс]. Режим доступа: http://www.xumuk.ru/encyklopedia/776.html

Для нормального функционирования недостаточно поступления в организм белков, жиров, углеводов, а также воды и минеральных солей. В пище должны быть еще биологически активные вещества, которые получили название витаминов. Они составляют отдельную группу органических веществ, которые не имеют энергетического значения. Витамины, подобно ферментам и гормонам, имеют большую физиологическую активность: в очень незначительных количествах они влияют на рост, обмен веществ и общее состояние организма.

Отсутствие или недостаток витаминов в пище вызывает тяжелые нарушения обмена веществ и заболевания — авитаминозы (цинга, рахит, задержка роста, кровоизлияния и др.). В организме витамины быстро разрушаются, поэтому их надо ежедневно вводить в организм с пищей. Некоторые витамины легко разрушаются под воздействием света, высокой температуры, кислорода. Поэтому организм может испытывать нехватку витаминов и при употреблении пищи, в которой витамины разрушились во время ее приготовления.

Известно до двадцати витаминов, различных по своему строению и физиологическому действию, их обозначают буквами латинского алфавита. По растворимости витамины делят на две группы: растворимые в жирах и растворимые в воде. К растворимым в жирах относятся витамины А, Д, Р, Е и К, а в растворимым в воде — витамин С и витамины группы В.

Значение витаминов для организма.

Витамин А (ретинол).

Витамин А называют витамином роста, так как при недостатке его в пище задерживается рост молодого организма. Кроме того, ослабляется устойчивость организма к инфекционным заболеваниям, ухудшается заживление ран, теряется способность видеть в сумерках («куриная слепота»). В тяжелых случаях этого авитаминоза развивается ксерофтальмия — роговая оболочка глаза мутнеет и покрывается язвами, что приводит к потере зрения. Авитаминоз этот излечивается, если в пище будет обеспечено необходимое количество витамина А.

Как растворимый в жирах, витамин А в достаточном количестве находится в сливочном масле, молоке, печени, яичном желтке, почках. Особенно много его в рыбьем жире, который получают из печени трески. Витамин А может образовываться и в организме человека при расщеплении растительного пигмента каротина и присоединения воды. Каротином богаты овощи и фрукты, которые имеют оранжевую окраску: морковь, помидоры, абрикосы, красный перец, а также шпинат и др.

Витамин А очень устойчив к высокой температуре и не разрушается при непродолжительном нагревании до 200°. Если в пище достаточное количество витамина А, то запасы его откладываются в печени, почках и других органах. Но избыток витамина А (гипервитаминоз) вреден, потому что он вызывает нарушения обмена веществ и пищеварения, анемию и т. д.

До 4-6-летнего возраста ребенку нужно в сутки 1 мг витамина А или 3 мг каротина, с 7 лет — 1,5 мг витамина А или 5 мг каротина.

Витамин D.

Витамин D влияет на обмен солей кальция и фосфора. При отсутствии в пище витамина D у детей раннего возраста развивается рахит. При этом заболевании задерживается зарастание родничков на черепе и прорезывание зубов. Кости ног становятся гибкими и под тяжестью тела искривляются. На ребрах появляются утолщения, грудная клетка меняет форму, в тяжелых случаях возникает горб. Витамин D устойчив к высокой температуре. Химическая природа его установлена, поэтому его, как и многие другие витамины, синтезируют искусственно. Суточная потребность в нем — 15-25 мг или 500-1000 интернациональных единиц.

Очень богат витамином D жир печени животных, особенно трески (рыбий жир). Много его и в яичном желтке. В мясе, молоке, животном жире, а также в коже человека содержится провитамин — эргостерин, который под воздействием ультрафиолетовых лучей превращается в витамин D. Поэтому для предотвращения и лечения рахита применяют солнечные ванны или кварцевание. В связи с этим становится понятным благотворное влияние летнего солнца на детей, больных рахитом. Летом дети большую часть дня находятся на солнце и при этом часто полураздетые, поэтому усиливается образование витамина D в коже, что способствует выздоровлению. А здоровых детей это гарантирует от заболевания рахитом.

Витамин Р (рутин).

Необходим для роста, уменьшает проницаемость и ломкость кровеносных сосудов, уменьшает свёртываемость крови, полезен при анемии. Содержится в зеленых частях растений, особенно в листьях салата, плодах шиповника. Больше всего витамина Р в лимонах и красном перце.

Витамин Е (токоферол).

Необходим для развития мышечной ткани и ее функционирования в раннем детском возрасте. При недостатке витамина Е наблюдаются также кровоизлияния в мозг, воспаления кожи, боль мышечного и нервного происхождения. Витамин Е предотвращает развитие атеросклероза и гипертонии, под его влиянием происходит образование коллагена в подкожной клетчатке и костях. Антиоксидант, иммуностимулятор. Необходим для нормального развития и функционирования нервной, иммунной и репродуктивной систем.

При кипячении не разрушается. Он в достаточном количестве есть как у животных, так и в растительных продуктах. Много его в печени, яичном желтке, зародышах пшеницы, в растительном масле и в овощах.

Витамин К.

Нужен для синтеза фермента крови протромбина, при недостатке которого снижается свертываемость крови. Играет большую роль в обмене веществ в костях, соединительной ткани и в работе почек. Он есть во многих пищевых продуктах. Также его синтезируют искусственно. Синтетический препарат — викасол применяют при кровотечениях (до 2 мг в сутки).

Витамины группы В.

К этой группе относится витамины, которые в пищевых продуктах содержатся чаще вместе.

Витамин B1.

Этот витамин играет важную роль в обмене углеводов, входя в состав ферментов, которые обеспечивают их полное окисление до углекислого газа и воды. При отсутствии витамина возникает заболевание, известное под названием бери-бери (полиневрит). Этот авитаминоз является следствием нарушения обмена веществ в нервной ткани. Сначала болезнь проявляется в расстройстве движений, быстром утомлении, потере аппетита. Затем наступает резкое похудение, судороги, паралич рук, ног. И, наконец, смерть от паралича дыхательных мышц.

Болезнь проходит при введении в организм витамина B1, которого много в пивных дрожжах, рисовых отрубях, бобах, зерне ржи и пшеницы, черном хлебе, грецких орехах, картофеле, зародышах и оболочках семян злаков, в печени и почках млекопитающих, в мозге, яичном желтке. При варке пищи витамин B1 сохраняется, но при температуре 120 ° он полностью разрушается. Теперь этот витамин производится и промышленным способом. В сутки нужно детям до 7 лет — 1 мг, от 7 до 14 лет — 1,5 мг, после 14 лет — 3 мг витамина В1.

Витамин В2 (рибофлавин).

При отсутствии в пище витамина В2 задерживается и уменьшается рост детского организма. Необходим для нормального развития и функционирования репродуктивной, иммунной систем, щитовидной железы, для формирования эритроцитов, для здоровья кожи, ногтей, волос. Витамин этот входит в состав так называемого желтого дыхательного пигмента, который находится в клетках, и участвует в клеточном дыхании.

Витамин В2 есть почти во всех продуктах растительного и животного происхождения, особенно в пшеничных отрубях, печени, сердце, молоке, яйцах, помидорах, капусте, шпинате, пивных дрожжах, фруктах. Суточная потребность: до 1 года — 1 мг, 3 года — 1,5 мг, 4-6 лет — 2,5 мг, 7-15 лет — 3 мг, 16 лет и старше — 3,5 мг витамина В2.

Витамин В3.

Более известен как никотиновая кислота или витамин РР. Участвует в окислительных реакциях в клетках. При отсутствии витамина РР развивается болезнь пеллагра, поэтому этот витамин называют антипеллагрический. Заболевание начинается покраснением кожи и появлением на ней пузырьков, которые быстро лопаются и на их месте возникают маленькие язвы. После зарастания последних кожа темнеет, особенно на участках, освещенных солнцем.

При пеллагре повреждается также слизистая оболочка желудочно-кишечного тракта, нарушается деятельность нервной системы: появляются галлюцинации, психозы. После употребления витамина РР болезнь быстро проходит. По химической природе витамин РР представляет собой никотиновую кислоту. Он есть во многих продуктах растительного и животного происхождения. Суточная потребность: до 1 года — 5 мг, 1-6 лет — 10 мг, 7-12 лет — 15 мг, 13-15 лет — 20 мг, 16 лет и старше — 25 мг витамина. Содержится в ржаном хлебе, гречневой крупе, мясе, грибах, фасоли, свёкле.

Витамины В4 (холин), В5 (пантотеновая кислота), В7 (биотин).

Витамины роста. Необходимы для нормального усвоения аминокислот, нормального функционирования желудочно-кишечного тракта, нервной и гормональной систем, участвуют в регуляции обмена веществ. Содержатся в тех же продуктах, что и витамин В2.

Витамин В6 (пиридоксин).

Участвует в синтезе ряда гормонов и биологически активных веществ. Необходим для нормального функционирования кожи. Суточная потребность 1,5 мг. Содержится в мясе, молоке, рыбе, яйцах и во многих растительных продуктах – картофеле, помидорах, капусте, моркови, бобовых, злаках, апельсинах, черешне, клубнике и др.

Витамин В12 (цианокобаламин).

Сложное органическое соединение, которое включает в себя кобальт. Витамин В12 стимулирует работу кроветворных органов. Недостаток его приводит к развитию В12-дефицитной (мегалобластной) анемии и неврологическим расстройствам. Витамином В12 богатые внутренние органы животных, особенно почки и печень.

Витамин С.

При отсутствии или недостатке в пище витамина С развивается цинга. Заболевание наступает постепенно. Сначала появляются язвы на слизистых оболочках, опухают и кровоточат десны, зубы расшатываются и выпадают; происходят кровоизлияния под кожу, в мышцы, суставы. Кости становятся хрупкими и легко ломаются. Развивается анемия, резко снижается сопротивляемость организма инфекционным заболеваниям. В тяжелых случаях наступает смерть.

Болезнь проходит, если организм получает достаточное количество витамина с пищей или в виде препарата. Основной источник витамина С – свежие фрукты, овощи, зелень. Много витамина С в свежих лимонах, апельсинах, ягодах черной смородины, шиповника, крыжовника, земляники, в яблоках, капусте, помидорах, зеленом луке, зеленом горошке, красном перце, петрушке, хвое сосны и ели, в неспелых грецких орехах.

По химической природе витамин С представляет собой аскорбиновую кислоту. Растворяется в воде. При длительном кипячении разрушается. При нагревании на воздухе легко окисляется. Разрушается витамин С также на свету и при доступе кислорода. Поэтому варить овощи рекомендуется в закрытых кастрюлях. Особенно быстро разрушается витамин С при повторном кипячении, а также в щелочной среде (например, при добавлении соды).

Потребность в витамине С в сутки: для детей до 7 лет — 50 мг, от 7 до 14 лет-60 мг, более 14 лет — 70 мг (норма взрослого). При инфекционных заболеваниях, а также при тяжелом физическом труде суточная потребность в витамине С значительно возрастает. Витамин С в организме не откладывается в запас, поэтому его нужно получать ежедневно.

Практика лечения цинги аскорбиновой кислотой показала, что последняя не дает такого полного выздоровления, как природные источники витамина С, например натуральные овощные и фруктовые соки. Оказалось, что в природных продуктах витамин С содержится вместе с витамином Р (рутин). Итак, цинга является двойным авитаминозом, так как при этом заболевании организм страдает от недостатка не только витамина С, но и витамина Р.

Витамины – жизненно важные вещества, необходимые нашему организму для поддержания многих его функций. Поэтому достаточное и постоянное поступление витаминов в организм с пищей крайне важно.

Биологическое действие витаминов в организме человека заключается в активном участии этих веществ в обменных процессах. В обмене белков, жиров и углеводов витамины принимают участие либо непосредственно, либо входя в состав сложных ферментных систем. Витамины участвуют в окислительных процессах, в результате которых из углеводов и жиров образуются многочисленные вещества, используемые организмом, как энергетический и пластический материал. Витамины способствуют нормальному росту клеток и развитию всего организма. Важную роль играют витамины в поддержании иммунных реакций организма, обеспечивающих его устойчивость к неблагоприятным факторам окружающей среды. Это имеет существенное значение в профилактике инфекционных заболеваний.

Витамины смягчают или устраняют неблагоприятное действие на организм человека многих лекарственных препаратов. Недостаток витаминов сказывается на состоянии отдельных органов и тканей, а также на важнейших функциях: рост, продолжение рода, интеллектуальные и физические возможности, защитные функции организма. Длительный недостаток витаминов ведет сначала к снижению трудоспособности, затем к ухудшению здоровья, а в самых крайних, тяжелых случаях это может закончиться смертью.

Только в некоторых случаях наш организм может синтезировать в небольших количествах отдельные витамины. Так, например, аминокислота триптофан может преобразовываться в организме в никотиновую кислоту. Витамины необходимы для синтеза гормонов – особых биологически активных веществ, которые регулируют самые разные функции организма.

Значит, получается, что витамины – это вещества, относящиеся к незаменимым факторам питания человека, и имеют огромное значение для жизнедеятельности организма. Они необходимы для гормональной системы и ферментной системы нашего организма. Также регулируют наш обмен веществ, делая организм человека здоровым, бодрым и красивым.

Основное их количество поступает в организм с пищей, и только некоторые синтезируются в кишечнике обитающими в нём полезными микроорганизмами, однако в этом случае их бывает не всегда достаточно. Многие витамины быстро разрушаются и не накапливаются в организме в нужных количествах, поэтому человек нуждается в постоянном поступлении их с пищей.

Применение витаминов с лечебной целью (витаминотерапия) первоначально было целиком связано с воздействием на различные формы их недостаточности. С середины XX века витамины стали широко использовать для витаминизации пищи, а так же кормов в животноводстве.

Ряд витаминов представлен не одним, а несколькими родственными соединениями. Знание химического строения витаминов позволило получать их путем химического синтеза; наряду с микробиологическим синтезом это основной способ производства витаминов в промышленных масштабах. Существуют также вещества, близкие по строению к витаминам, так называемые провитамины, которые, поступая в организм человека, превращаются в витамины. Существуют химические вещества, близкие по своему строению к витаминам, но они оказывают на организм прямо противоположное действие, поэтому получили название антивитаминов. К этой группе относят также вещества, связывающие или разрушающие витамины. Антивитаминами являются и некоторые лекарственные средства (антибиотики, сульфаниламиды и др.), что служит еще одним доказательством опасности самолечения и бесконтрольного употребления лекарств.

Первоисточником витаминов являются растения, в которых витамины накапливаются. В организм витамины поступают в основном с пищей. Некоторые из них синтезируются в кишечнике под влиянием жизнедеятельности микроорганизмов, но образующиеся количества витаминов не всегда полностью удовлетворяют потребности организма. Витамины участвуют в регуляции обмена веществ; они являются биологическими катализаторами или реагентами фотохимических процессов, протекающих в организме, также они активно участвуют в образовании ферментов.

Витамины влияют на усвоение питательных веществ, способствуют нормальному росту клеток и развитию всего организма. Являясь составной частью ферментов, витамины определяют их нормальную функцию и активность. Недостаток, а тем более отсутствие в организме какого-либо витамина ведет к нарушению обмена веществ. При недостатке их в пище снижается работоспособность человека, сопротивляемость организма к заболеваниям, к действию неблагоприятных факторов окружающей среды. В результате дефицита или отсутствия витаминов, развивается витаминная недостаточность.

Важность отдельных витаминов для человека

Витамин А содержится в животных продуктах. Богаты этим витамином печень, сливочное масло, яйца и особенно рыбий жир. Растительные продукты содержат каротин - особое вещество, которое в организме человека превращается в витамин А. Много каротина в моркови. При отсутствии в пище витамина А замедляется рост и развивается заболевание глаз (куриная слепота). Витамин А повышает устойчивость организма к инфекционным заболеваниям. Этот витамин хорошо растворяется в жирах. При действии кислорода воздуха витамин А разрушается. Витамин А особенно важен в питании детей первого года жизни.

Витамин B1 содержится в оболочках зерновых хлебов, овощах, плодах, молоке, дрожжах, почках и печени животных. Особенно богаты витамином B1 рисовые отруби и пшеница. Недостаток этого витамина в пище вызывает расстройство нервной системы, падение аппетита, быструю утомляемость. Витамин B1 устойчив к воздействию высокой температуры.
В1 находится и дрожжах, молоке, печени и почках животных, мясе и др. Этот витамин повышает усвояемость пищи, способствует лучшему обмену и т. и. При недостатке его нарушается нормальная функция органов зрения. Витамин С легко разрушается при нагревании, воздействии кислорода воздуха и солнечного света, длительном хранении. Ускоряет потери витамина С хранение овощей, фруктов и ягод в тепле и на свету. Лучше сохраняется он в цитрусовых плодах. Регулирует окисление продуктов обмена углеводов, участвует в обмене аминокислот и жирных кислот, разносторонне влияет на функции сердечнососудистой, пищеварительной, эндокринной, центральной и периферической нервной систем. Недостаток витамина часто приводит к нервным расстройствам.

Витамин С содержится главным образом в овощах и плодах. Особенно богаты этим витамином хвоя, сосна, плоды шиповника, зеленые грецкие орехи, черная смородина и др. Отсутствие витамина С в пище вызывает заболевания, называемые цингой. Этот витамин укрепляет организм против инфекционных заболевании. Витамин С растворим в воде, он легко разрушается при действии кислорода воздуха и кипячении. Недостаток витамина С приводит к снижению сопротивляемости различным инфекциям, а его отсутствие - к развитию цинги. Мнение о том, что большие дозы витамина С лечат простудные заболевания, не нашло подтверждения - лишь в самом начале прием таких доз может способствовать снятию симптомов простуды.

Витамин D находится главным образом в продуктах животного происхождения: в рыбьем жире, сливочном масле, яичном желтке, икре, молоке и т. п. Этот витамин предохраняет детский организм от заболевания рахитом. При отсутствии витамина D кости становятся хрупкими, зубы плохо развиваются. Этот витамин растворяется в жирах. Регулирует обмен кальция и фосфора, способствуя их всасыванию из кишечника и отложению в костях. Витамин D образуется из провитамина в коже под действием солнечных лучей и поступает с животными продуктами: печень рыб, жирные сорта рыб (сельдь, кета, скумбрия и другие), икра, яйца, молочные жиры. Он хорошо сохраняется в консервах и продуктах кулинарной обработки, так как стоек к нагреванию. Готовые препараты витамина D следует употреблять по указанию врача.

Происхождение названий витаминов

Но вернемся к истории исследования витаминов. В 20-е гг. с разработкой способов получения экспериментальных авитаминозов и совершенствованием методов очистки витаминов постепенно становилось ясно, что витаминов не два и не три, а гораздо больше.

Вначале выяснили, что "витамин А" на самом деле является смесью двух соединений, одно из которых предотвращает ксерофтальмию, а другое – рахит. За первым сохранилась буква А, а второе назвали "витамин D". Затем был открыт витамин Е, предотвращавший бесплодие у крыс, растущих на искусственной диете. Тогда же стало ясно, что и "витамин В" состоит как минимум из двух витаминов. Вот тут и начинается первая путаница: одни исследователи обозначили новый витамин, предотвращавший пеллагру у крыс и стимулировавший рост животных, буквой G, другие предпочли называть этот фактор "витамином В 2 ", а фактор, предотвращавший бери-бери, – "витамином В 1 ".

Термины "В 1 " и "В 2 " прижились. Фактор роста сохранил название "В 2 ", а фактор, предотвращающий пеллагру крыс, стал "В 6 ". Почему же использовали индекс 6? Разумеется, потому, что за это время появились "В 3 ", "В 4 " и "В 5 ". Куда же они потом делись?

Название "В 3 " получило в 1928 г. новое вещество, найденное в дрожжах и предотвращавшее дерматит у цыплят. Об этом веществе долгое время не было известно практически ничего, а десять лет спустя выяснилось, что оно идентично пантотеновой кислоте, которая изучалась как фактор роста дрожжей. В результате для этого витамина осталось название "пантотеновая ксилота".

В 1929 г. в дрожжах был обнаружен фактор, который поспешили назвать "витамином В 4 ". Вскоре выяснилось, что этот фактор – не витамин, а смесь трех аминокислот (аргинина, глицина и цистина).

В 1930 г. появился термин "витамин В 5 ": такое название было предложено для фактора, который впоследствии оказался смесью двух витаминов. Один из них – никотиновая кислота, которую изредка продолжают называть "витамин В 5 ", другой – витамин В 6 .

И в последующие годы продолжался тот же процесс: время от времени появлялись сообщения об открытиях новых факторов, и к букве "В" добавлялся новый индекс. Но повезло только индексу 12. Соединения с другими индексами либо оказались не витаминами или уже известными витаминами, либо их действие не получило подтверждения, либо название не получило широкого распространения.

А вскоре буквенная классификация витаминов утратила свое значение. В 30-е гг. за витамины по-настоящему взялись химики. И если в 1930 г. о химической природе витаминов практически ничего не было известно, то к 1940 г. этот вопрос был в основном решен.

Химики дали всем витаминам тривиальные химические названия. И эти названия постепенно стали вытеснять "буквы с цифрами": аскорбиновая кислота, токоферол, рибофлавин, никотиновая кислота и др. – эти термины стали общеупотребительными. Впрочем, многие биологи медики сохранили верность "буквам".

В 1976 г. Международный союз нутриционистов (от англ. nutrition – питание) рекомендовал сохранять буквенные обозначения в группе В только для витаминов В 6 и В 12 (по-видимому, из-за того, что эти витамины имеют несколько форм). Для остальных рекомендованы тривиальные названия веществ: тиамин, рибофлавин, пантотеновая кислота, биотин – или обобщающие термины: ниацин, фолацин .

Какие же витамины и в каких количествах человеку необходимо получать ежедневно?

Витамин А (аксерофтол , ретинол ) способствует образованию зрительного пигмента, сохранению зрения, помогает организму бороться с инфекциями, участвует в регулировании процессов размножения и роста клеток, помогает поддерживать кожу и слизистые оболочки в нормальном состоянии.

Особенностью витамина является то, что он содержится только в продуктах животного происхождения: рыбьем жире, свиной и говяжьей печени, желтках куриных яиц, сливочном масле, сметане и др.

В некоторых растениях содержится каротин (провитамин А ), который в печени и кишечнике человека под воздействием фермента каротиназы превращается в витамин А .

Значительное количество каротина содержится в моркови, щавеле, красном перце, шпинате, томатах, салате, тыкве, зеленом луке, персиках, абрикосах, шиповнике, облепихе, рябине, во многих дикорастущих растениях и др.

В сутки взрослый человек должен получать 1,5 мг витамина А и 4,5-5 мг провитамина А. Стоит учесть, что витамин А накапливается в организме человека и может сохраняться до 2-3 лет.

Витамин B1 (аневрин , тиамин ) способствует усвоению углеводов, белковому, жировому и минеральному обменам, нормализует кровообращение, функции нервной системы, секрецию желудочного сока и перистальтику желудка, повышает защитные свойства организма.

Витамин B1 содержится в продуктах животного и растительного происхождения: желтках яиц, свином мясе, печени, почках, хлебе из муки грубого помола, отрубях, зернах злаков, картофеле, помидорах, моркови, капусте и т.д.

В организме он не накапливается, его необходимо ежедневно получать с пищей. В сутки взрослый человек должен получать 2-3 мг витамина В1 . Потребность в этом витамине повышается при физических и умственных нагрузках, беременности и кормлении грудью, различных заболеваниях.

Витамин В2 (рибо- и лактофлавин ) участвует в окислительных процессах при углеводном обмене, способствует нормализации зрения, процессов роста тканей организма.

Содержится в зеленом горошке, фасоли, проростках пшеницы и ржи, миндале, лесных и грецких орехах, многих корнеплодах, мясе, почках, печени, дрожжах, грибах, яйцах, сыре, луке, гречневой крупе, чайном грибе, квашеных овощах и т.д.

Суточная потребность 2,5-3,5 мг.

Витамин В6 (пиридоксина гидрохлорид ) входит в состав ферментов, способствующих белковому и жировому обменам, кроветворению, улучшает функции печени, повышает сопротивляемость организма.

Содержится в пшенице, просе, ячмене, кукурузе, муке грубого помола, гречневой крупе, пшене, пивных дрожжах, мясе, печени, рыбе, многих овощах и фруктах. Может под влиянием бактериальной флоры образовываться в кишечнике человека.

Для взрослого человека суточная потребность 1,5-3 мг.

Витамин B12 (цианокобаламин ) участвует в белковом и жировом обмене, улучшает кроветворение и усвоение тканями кислорода, способствует нормализации функций центральной нервной системы.

Содержится в основном в продуктах животного происхождения, в человеческом организме накапливается в печени.

Суточная потребность - 3 мг.

Витамин B15 (пангамовая кислота ) способствует обмену кислорода в клетках и регенерации печеночной ткани, нормализует функционирование надпочечников.

Содержится в ядрах косточковых плодов, проросших семенах и ростках многих растений.

Суточная потребность - 2-3 мг. При отдельных заболеваниях потребность в витамине возрастает.

Витамин В9 (фолиевая кислота , фолацин ) способствует росту и развитию организма, образованию белков, стимулирует кроветворение в костном мозгу, понижает возможность развития атеросклероза.

Содержится в продуктах животного и растительного происхождения, но в небольших количествах и в неактивной форме (в кишечнике она расщепляется и после этого всасывается). Фолиевая кислота под влиянием кишечных бактерий может синтезироваться в кишечнике человека. При отдельных заболеваниях кишечника расщепление и всасывание фолиевой кислоты не происходит, наступает ее дефицит в организме, могущий привести к макроцитарной анемии.

Витамин С (аскорбиновая кислота ) регулирует окислительно-восстановительные процессы и повышает жизненные силы организма, сопротивляемость инфекциям, улучшает проницаемость стенок капилляров кровеносных сосудов и свертываемость крови, восстановление костной ткани, снижает риск развития склероза и т.д. В организме этот витамин не образуется, но расходуется непрерывно, поэтому суточная потребность взрослого человека - до 100 мг.

Содержится в основном в овощах, фруктах, ягодах, хвое и многих дикорастущих растениях.

Витамин Е (токоферол ) способствует регуляции процессов размножения, обмена белков, жиров и углеводов.

Содержится в растительных маслах, зеленых бобах, зеленом горошке, кукурузе, пшенице, овсе, шиповнике и др.

Суточная потребность - 20-30 мг. Может накапливаться в жировой ткани.

Витамин К (филлохинон ) способствует свертываемости крови, участвует в образовании протромбина в печени, влияет на обмен веществ и улучшает деятельность желудочно-кишечного тракта, повышает прочность стенок кровеносных капилляров, обладает антибактериальным действием, способствует уменьшению болевого синдрома.

Содержится во многих овощах, бобовых, злаках, ягодах и дикорастущих растениях.

Витамин РР (никотиновая кислота , ниацин ) способствует нормализации обмена веществ и снижению количества холестерина в крови, входит в ферменты, участвующие в окислительных процессах.

Содержится в овощах, фруктах, злаках, бобовых, грибах, многих дикорастущих растениях.

Суточная потребность 10-15 мг.

Недостаток, как и значительный избыток в организме человека отдельных витаминов отрицательно сказывается на состоянии здоровья и может привести к серьезным заболеваниям. Своевременное и сбалансированное получение необходимого количества витаминов способствует нормальной жизнедеятельности человека.

Витамины - органические соединения, содержащиеся в животных и растительных продуктах и совершенно необходимые для нормального обмена веществ. Их состав и структура весьма разнообразны. Витамины выполняют функцию катализаторов биологического происхождения и имеют химическое сродство с ферментами и гормонами, которые также действуют как катализаторы, взаимодействуя с витаминами в обмене веществ. Витамины способствуют действию гормонов. В организме из витаминов синтезируются некоторые ферменты, связь витаминов с ферментами объясняет их важную роль в обмене веществ. Нервная система участвует во взаимодействии витаминов, ферментов и гормонов.

В отличие от ферментов и гормонов большинство витаминов, за исключением некоторых, не образуется в организме человека. Главным источником витаминов являются растительные продукты, но они содержатся также в мясных и рыбных. Витамины требуются в очень небольших количествах, но отсутствие одного из витаминов в пище нарушает образование в организме соответствующего фермента, что приводит к нарушениям функций организма и характерным заболеваниям, обозначаемым как авитаминозы (задержка роста, цинга, рахит, множественное воспаление нервов, кровоизлияния и др.). При недостаточном содержании одного из витаминов в пище или при нормальном его содержании, но увеличенном потреблении наблюдаются гиповитаминозы, проявляющиеся в снижении работоспособности и предрасположенности к заболеваниям. Избыток одного из витаминов - гипервитаминоз -также вреден и может привести к тяжелым заболеваниям и смерти. Особенно велико значение витаминов для жизнедеятельности, нормального развития и роста детей, а также образования иммунитета.

В настоящее время известно около 50 разных витаминов, которые делят на две группы: растворимые в воде и растворимые в жирах. К растворимым в воде относятся витамины РР, С, Р и группы В.

Витамин B 1 (противоневротический, анейрин, тиамин). Разрушается при нагревании до 140 °С, особенно быстро в щелочной среде. Хорошо сохраняется при сушке и обычном приготовлении пищи. Синтезируется в растениях. Содержится в лесных орехах, хлебе грубого помола, гречневой, ячневой и овсяной крупах, в бобовых и в особенно большом количестве в пивных дрожжах и печени. Суточная потребность детей (мг): до года - 0,5; до 3 лет - 1; от 4 до 12 - 1,5; с 13 - 2; с 16 - 2,5; взрослых - 2-3, а при тяжелой физической работе - 3-5, до 10. Участвует в синтезе нуклеиновых кислот, улучшает рост, укрепляет мускулатуру и предохраняет от заболеваний легких, необходим для нормального функционирования нервной системы, уменьшает боль. При гиповитаминозе наблюдается утомляемость, раздражительность, потеря аппетита. При авитаминозе наблюдается расстройство движений, параличи, судороги, множественное воспаление и перерождение нервных клеток и нервов. Запаса витамина В 1 в организме не образуется, поэтому он должен постоянно поступать с пищей.

Витамин В 2 (фактор роста, рибофлавин, лактофлавин). Синтезирован вне организма. Легко разрушается при действии света, щелочей и кипячении, не окисляется, физиологически активен только в сочетании с белком. Содержится в хлебе, гречневой крупе, молоке, яйцах, печени, мясе, томатах. Суточная потребность детей (мг): до года - 1, с 1 до 3 лет - 1,5, с 4 до 6 - 2,5, с 7 - 3, с 15 лет и взрослых - 3,5. Необходим для нормального зрения, особенно цветного, образования гемоглобина, белкового и углеводного обмена. При гиповитаминозе наблюдается воспаление глазного яблока, помутнение роговицы и хрусталика, воспаление кожи, языка, губ, трофические язвы, длительное незаживление ран, задержка роста и созревания организма, падение веса, поражение нервной системы.

Витамины В 3 , В 4 , B 5 и В 7 (факторы роста). Содержатся в тех же продуктах, что и B 1 .

Витамин В 6 (адермин, пиридоксин). Быстро разрушается на свету. Не разрушается при высокой температуре в кислых и щелочных растворах. Содержится в дрожжах, бобах, свежем рыбьем жире, печени, почках и мясе. Суточная доза (мг): детей до 1 года - 0,5, до 3 лет - 1, с 4 до 12 - 1,5, с 13 и взрослых - 2. Участвует в белковом обмене, обмене веществ кожи, функциях нервной системы (в синтезе и обмене глютаминовой кислоты), вестибулярного аппарата, кроветворения. При авитаминозе наблюдается поражение кожи, слизистых оболочек, мышечная слабость, судороги, нарушение координации движений.

Витамин В 9 (фолиевая кислота). При нагревании 50-90 % разрушаются. Содержится в больших количествах в листьях растений, особенно много в цветной капусте, печени, мясе. Суточная доза (мг): с 1 до 12 лет - 0,1, с 13 лет и взрослых - 0,2. Необходим для кроветворения, образования эритроцитов и лейкоцитов. Участвует в обмене холина и снижает содержание холестерина в крови, является одним из катализаторов синтеза аминокислот. При авитаминозе наблюдается малокровие.

Витамин B 12 (антианемический фактор, цианкоболамин). Содержит 4,5 % кобальта. У человека синтезируется в кишечнике и поступает в печень. Содержится в печени млекопитающих и рыб (особенно осетра, судака) и в почках. Суточная доза 0,005-0,015 мг. Участвует в обмене белков, нуклеиновых кислот, образовании метионина и холина, обмене веществ в головном мозге. Ускоряет рост и развитие. Возбуждает кроветворение, превращает неактивную фолиевую кислоту в активную, поддерживает защитную функцию печени. Нормализует содержание лейкоцитов и холестерина в крови, тормозит образование холестерина. Для его связывания и всасывания необходим внутренний фактор, образуемый в обкладочных клетках желудочных желез.

Витамин B 15 (пангамат кальция). Содержится в пивных дрожжах, семенах многих растений. Повышает окислительные процессы, улучшает обмен липидов, увеличивает содержание гликогена и в печени и мышцах, усиливает действие ацетилхолина. Суточная доза (мг): с 3 до
7 - 100, с 7 до 14 - 150, взрослых - 100-300. Витамин B 15 не является истинным витамином, так как его недостаток не вызывает нарушения функций.

Витамин Н (кожный фактор, биотин). Синтезирован вне организма. Содержится в дрожжах, томате, печени, почках, яичном желтке. В соединении с альбумином куриного яйца - авидином - образует лизоцим. При еде больших количеств сырого яичного белка у человека образуется неактивный комплекс биотин - авидин, что приводит к авитаминозу - поражению кожи, выпадению волос, выделению большого количества кожного сала.

Витамин В х (пантотеновая кислота). Содержится в растительных и животных продуктах: капусте, картофеле, моркови, дрожжах, рисе, луке, молоке, мясе, печени, яичном желтке. Суточная доза 10-12 мг. Участвует в углеводном обмене, образовании ацетилхолина в нервной системе, в окислении конечных продуктов белков, жиров и углеводов. При гипо- и авитаминозах наблюдается прекращение роста, воспаление кожи, роговицы, воспаления нервов, параличи, нарушение координации движений.

Холин. Содержится в животных и растительных продуктах: желтке яйца, печени, говядине, рыбе, молоке, сыре, горохе, капусте. Суточная доза 0,5-1,5 г. Регулирует отложение жира и улучшает обмен холестерина (липотропный). Синтезируется в организме из аминокислоты метионина.

Инозит. Содержится в печени, почках, мясе, зеленом горошке, дыне, апельсине. Суточная доза до 1 г. Снижает содержание холестерина в крови, задерживает артериосклероз, улучшает перистальтику кишечника.

Витамин РР (никотиновая кислота, никотинамид). Содержится в зеленых овощах, моркови, картофеле, рисовых и пшеничных отрубях, горохе, дрожжах, гречневой крупе, ржаном и пшеничном хлебе, молоке, мясе, печени. Синтезируется в организме человека из аминокислоты триптофана. Суточная доза (мг): до 1 года - 5, с 1 до 7 лет - 10, с 7 до 12 - 15, с 12 лет и у взрослых 20-30. Участвует в переносе водородных ионов, углеводном обмене, образовании соляной кислоты желудочного сока, в нормализации функции поджелудочной железы, защитной функции печени, регулирует нервный процесс в больших полушариях головного мозга. При гиповитаминозе наблюдается страх, головокружение, бессонница. При авитаминозе развивается пеллагра, которая проявляется в потере памяти, слабоумии, бреде, поражении кожи, поносах, поэтому витамин называется РР, т. е. предупреждающий пеллагру.

Витамин С (противоцинготный, аскорбиновая кислота). Синтезирован вне организма. Разрушается при доступе кислорода, нагревании в нейтральной и особенно щелочной среде, следовательно, при кулинарной обработке пищи, долгом хранении. Содержится в свежих овощах, фруктах, ягодах (черной смородине, шиповнике, крыжовнике, землянике и др.); в капусте, зеленом луке, зеленом горохе, картофеле, брюкве, редисе, редьке, яблоках (антоновка), апельсине, лимоне, а также молоке, почках, мозге, печени, надпочечниках. Суточная доза (мг): детям до
3 лет - 30-40, от 4 до 6-50, от 7 до 12-60, старше 13-70; взрослым 75-100, при тяжелой физической работе 200-300. Витамин С необходим для обмена веществ, участвует в образовании костей и зубов, синтезе белков, всасывании сахара, углеводном обмене, тканевом дыхании, являясь переносчиком кислорода и водорода, повышает иммунитет. Также участвует в синтезе белковой части ферментов, гормонов белковой природы и нуклеиновых кислот. При гиповитаминозе наблюдаются утомляемость, головокружение, нарушение иммунитета, кровоточивость десен, заболевания кожи. При авитаминозе развивается цинга, которая проявляется в одышке, мышечной слабости, быстрой утомляемости, нервности, сонливости, кровоизлияниях на коже туловища, рук и главным образом ног, деснах, в мышцах, суставах, ребрах, выпадении зубов, падении веса тела. Тяжелые случаи цинги приводят к смерти. При гипервитаминозе нарушается обмен веществ, особенно углеводный, появляется головная боль, бессонница. В организме витамин С не образуется и не накапливается и поэтому должен постоянно поступать с пищей.

Витамин Р (второй противоцынготный фактор, рутин, цитрин). Содержится в ягодах черной смородины, лимоне и красном перце. Суточная доза 50-100 мг.

К витаминам, растворимым в жирах, относятся А, D, F, Е и К.

Витамин А (витамин роста, ретинол). При окислении быстро разрушается, а кипячение его почти не разрушает. Образуется в печени из провитамина каротина, содержащегося в зеленых частях растений, особенно в моркови, помидорах, томате, шпинате, салате, абрикосах. Содержится в рыбьем жире, рыбьей икре, молоке, сливочном масле, печени, почках, желтке яиц летней носки. Суточная доза детей (мг): 1 года - 0,5, с 1 до 7 - 1, с 7 и взрослых - 1,5, а при тяжелой физической работе -
3 мг. Способствует росту организма, входит в состав зрительного пурпура, поэтому необходим для зрения, обеспечивает иммунитет. При гиповитаминозе понижается иммунитет, появляется гемералопия (куриная слепота), особенно при истощении организма и голодании. При авитаминозе наблюдается воспаление сетчатки глаз, сухость и последующее размягчение роговицы (ксерофтальмия и кератомаляция), сухость кожи, воспаление слизистой оболочки бронхов, мочевого и желчного пузырей, потеря обоняния, нарушение роста зубов, кровавые поносы, нарушение функции половых желез (падение полового влечения, бесплодие). У детей при авитаминозе задерживается развитие организма, останавливается рост, поражается зрение, нарушается иммунитет. Гипервитаминоз резко нарушает пищеварение и обмен веществ, вызывает малокровие.

Витамин D (противорахитический, витаминол, вигантол, кальциферол). Не окисляется, разрушается только при очень высокой температуре. Содержится в рыбьем жире, икре, молоке, сливочном масле, желтке яиц летней носки. В коже человека имеется запас провитамина (эргостерина), который при облучении ультрафиолетовыми лучами (солнце, кварцевая лампа) превращается в активный витамин. Суточная доза детей 15-25 мкг, при рахите она увеличивается в 2-3 раза, взрослых - 25 мкг. Регулирует кальциевый и фосфорный обмен, поэтому необходим для нормального развития и роста скелета детей. При увеличении содержания фосфора в пище потребность в нем возрастает. Действие витамина связано с действием гормона паращитовидных желез и нормальной функцией щитовидной железы. При авитаминозе развивается рахит, который проявляется в расстройстве фосфорного и кальциевого обмена, потере организмом солей фосфора и кальция, нарушении формирования костей скелета и развития зубов, мышечной слабости. У детей, больных рахитом, кости становятся гибкими, появляются искривления рук и ног. Очень большие дозы витамина ядовиты: резко увеличивается содержание кальция и фосфора в крови, избыточно откладываются соли кальция в скелете, сердце, стенках кровеносных сосудов, в почках, легких и других органах; наблюдаются потеря аппетита, поносы, нарушение жирового обмена, приводящие к смерти.

Витамин F (фактор роста, обмена кальция). Состоит из ненасыщенных жирных кислот: линолевой, линоленовой и арахидоновой. Не истинный витамин. Содержится в зеленых листьях растений, особенно в салате, плодах шиповника, рыбьем жире, мясе, яичном желтке, подсолнечном, соевом, кукурузном и льняном маслах. Регулирует обмен жиров, ускоряя окисление насыщенных жирных кислот. Влияет на обмен витаминов группы В, С, Р, PP. Предупреждает артериосклероз. Уменьшает ядовитое действие витамина D. При авитаминозе наблюдается задержка роста, сухость кожи, в старости ломаются кости. Суточная доза (в г): младших школьников - 4,5, подростков - 8, юношей - 9,5, девушек - 8, взрослых - 10.

Витамин Е (витамин размножения, токоферол). Легко окисляется. Не разрушается при кипячении. Устойчив к кислотам, но разрушается щелочами. Синтезирован вне организма. Содержится в тех же продуктах, что и витамин F, а также в гипофизе, но отсутствует в рыбьем жире. Накапливается в жировой ткани женщин в два раза больше, чем мужчин. Участвует в регуляции процесса оплодотворения, нормального течения беременности и развития плода. Необходим для развития мышц и их функции, особенно в раннем детском возрасте, предупреждает артериосклероз, повышение кровяного давления, гемолиз. Суточная доза взрослых - 20-30 мг, а при тяжелой физической работе - 30-50 мг. При недостатке в пище витамина А суточная потребность в нем увеличивается. При гиповитаминозе наблюдается дистрофия мускулатуры, уменьшение физической работоспособности, мышечные боли, мозговые кровоизлияния, воспаление суставов и кожи. При авитаминозе имеет место бесплодие, нарушение образования половых гормонов, нарушения беременности и развития плода и его гибель, повышение потребности в витаминах группы В.

Витамин К (витамин свертывания крови, противогеморрагический, филохинон, викасол). Быстро разрушается при действии света и щелочей. Содержится в зеленых частях растений, свежей капусте, моркови, шпинате, незрелых томатах, сухой люцерне, печени свиньи. Синтезируется микробами в толстой кишке. Необходим для синтеза протромбина в печени. При гиповитаминозе и авитаминозе наблюдается кровоточивость, малокровие. В некоторых растениях (клевер) содержится антивитамин К (дикумарин), угнетающий синтез протромбина и препятствующий образованию тромбов. Суточная доза (мг): с 3 до 4 - 8, с 5 до 9 - 10, с 10 до 14 - 15, взрослых - 15-30.

Загрузка...