Польза натуральных продуктов. Витамины, макроэлементы

Врожденный иммунитет. Современное понятие об иммунитете. Врожденный и приобретенный иммунитет. Виды приобретенного иммунитета. Особенности противовирусного иммунитета. Что такое врожденный иммунитет

Общая система иммунитета человека состоит из неспецифического (врожденного, переданного генетическим путем) и специфического иммунитета, который формируется в течение его жизни. На неспецифический иммунитет приходится 60-65% от всего иммунного статуса организма. Система врождённого иммунитета осуществляет основную защиту у большинства живых многоклеточных организмов. представляют собой две взаимодействующие части одной очень сложной системы, обеспечивающей развитие иммунного ответа на генетически чужеродные субстанции. Долгие годы сосуществовали два противоположных «полюса» и взгляда на вопрос, кто же важнее и главнее в защите от инфекций - врожденный иммунитет или приобретенный.

Иммунитет врожденный и приобретенный

Система врожденного иммунитета представляет собой совокупность различных клеточных рецепторов, ферментов и интерферонов, обладающих противовирусными свойствами и создает мощный заслон попаданию в организм бактерий, вирусов, грибков и так далее. Врожденный иммунитет характерен тем, что для развития неспецифических иммунных реакций ему не требуется предварительного контакта с инфекционным агентом. Существует удивительно тесное сходство между системами врожденного иммунитета у самых различных животных. Это свидетельство того, что эволюционно самая древняя система неспецифического иммунитета имеет жизненно важное значение. Система врождённого иммунитета намного более эволюционно древняя, чем система приобретённого иммунитета, и присутствует у всех видов растений и животных, но подробно изучена только у позвоночных. Было время, когда система врожденного иммунитета у позвоночных животных считалась архаичной и устаревшей, однако сегодня доподлинно известно, что от состояния врожденного иммунитета во многом зависит функционирование системы приобретенного иммунитета. Действительно неспецифический иммунный ответ определяет эффективность специфического иммунного ответа. Теперь уже считается общепринятым, что система врожденного иммунитета инициирует и оптимизирует реакции специфического иммунитета, которые развиваются более медленно. Иммунитет врожденный и приобретенный тесно взаимодействуют друг с другом. Своеобразным посредником во взаимодействии обеих систем является система комплемента. Система комплемента состоит из группы сывороточных глобулинов, которые, взаимодействуя в определенной последовательности, разрушают стенки клеток как самого организма, так и клетки микроорганизмов, проникших в тело человека. Одновременно система комплемента активизирует специфический иммунитет человека . Система комплемента способна разрушить неправильно построенные клетки эритроцитов и опухолевых клеток. Система комплемента обеспечивает непрерывность иммунного ответа. Именно неспецифический иммунитет отвечает и несет контроль за уничтожение раковых (опухолевых) клеток. Поэтому создание различных вакцин против рака - это элементарная биохимическая безграмотность и профанация, поскольку никакая вакцина не способна формировать неспецифический иммунитет. Любая вакцина, наоборот, формирует исключительно специфический иммунитет.

Система врожденного иммунитета

Неспецифический иммунитет формируется в организме человека, начиная с внутриутробного развития. Так на 2 месяце беременности уже обнаруживаются первые фагоциты - гранулоциты, а моноциты появляются на 4 месяце. Эти фагоциты формируется из стволовых клеток, которые синтезируются в костном мозге, а затем эти клетки, попадают в селезенку, где с целью их активирования к ним добавляется углеводный блок системы рецепции "свой-чужой". После рождения ребенка, врожденный иммунитет поддерживается за счет работы клеток селезенки, где формируются растворимые компоненты неспецифического иммунитета. Таким образом, селезенка является местом постоянного синтеза клеточных и неклеточных компонентов неспецифического иммунитета. Врожденный иммунитет сегодня считают абсолютным, так как в подавляющем большинстве случаев этот иммунитет не удаётся нарушить заражением даже громадными количествами вполне вирулентного материала. Вирулентность (лат. Virulentus — «ядовитый»), степень болезнетворности (патогенности) данного инфекционного агента (вируса, бактерии или другого микроба). Вирулентность зависит, как от свойств инфекционного агента, так и от чувствительности инфицированного организма. Однако могут быть и исключения, свидетельствующие об относительности врожденного иммунитета. Врожденный иммунитет в некоторых случаях может быть снижен действием ионизирующей радиации и созданием иммунологической толерантности. Врожденный иммунитет является первой линией защиты организма млекопитающих против агрессоров. Инфекционные агенты и их структурные компоненты, которые добрались до слизистых кишечника, носоглотки, легких или попали внутрь организма, «запускают» врожденный иммунитет. Через рецепторы врожденного иммунитета происходит активация фагоцитов - клеток, которые «заглатывают» чужеродные микроорганизмы или частицы. Фагоциты (нейтрофилы, моноциты и макрофаги, дендритные клетки и другие) - основные клетки врожденной иммунной системы. Фагоциты обычно циркулируют по организму в поисках чужеродных материалов, но могут быть призваны в конкретное место при помощи цитокинов. Цитокины - сигнальные молекулы играют очень важную роль на всех этапах иммунного ответа. Одни цитокины выступают в качестве медиаторов реакций врожденного иммунитета, а другие контролируют реакции специфического иммунитета. В последнем случае цитокины регулируют активацию, рост и дифференцировку клеток. К числу наиболее важных цитокинов относятся и молекулы трансфер факторы , которые составляют основу линейки американских препаратов, которые получили название Трансфер Фактор .

NК-клетки и Трансфер Фактор

Цитокины регулируют и активность NK-клеток. Нормальные киллеры или NK-клетки - это лимфоциты, обладающие цитотоксической активностью, то есть способные прикрепляться к клеткам-мишеням, секретировать токсичные для них белки, таким образом, их уничтожая. NK-клетки распознают клетки, пораженные некоторыми вирусами, и опухолевые клетки. Они содержат на мембране рецепторы, реагирующие со специфическими углеводами поверхности клеток-мишеней. Снижение НК-клеточной активности и снижение общего числа НК-клеток связаны с развитием и быстрым прогрессированием таких заболеваний, как рак, вирусный гепатит, СПИД, синдром хронической усталости, синдром иммунодефицита и целый ряд аутоиммунных заболеваний . Повышение функциональной активности натуральных киллеров напрямую связано с проявлением противовирусного и противоопухолевого действия. Сегодня ведется активный поиск лекарственных средств, способных стимулировать именно NK-клетки. В этом специалисты видят перспективу для разработки противовирусных препаратов широкого спектра действия. Но на сегодняшний день создан только один препарат, который способный стимулировать NK-клетки - и это Трансфер Фактор! Доказано, что Трансфер Фактор максимально повышают активность NK-клеток. Трансфер Фактор классик повышает активность этих клеток на 103%, а это значительно больше по сравнению с другими адаптогенами , в том числе, с обычным молозивом , которое повышает активность NK-клеток на 23%. Но только подумайте, Трансфер Фактор плюс, повышает активность NK-клеток на 283%! А сочетание Трансфер фактор плюс и Трансфер фактор Эдвенсд еще больше усиливает данный эффект - повышает активность NK-клеток на 437%, практически в 5 раз, полностью восстанавливая их активность в нашем организме. Именно поэтому Трансфер Фактор сегодня актуален в современном мире, а для жителей мегаполисов Трансфер Фактор вообще жизненно необходим, так как активность NK-клеток у жителей городов в 4-5 раз меньше нормы. И это доказанный факт! Так как у «условно здоровых» людей в нашей стране уровень активности NK-клеток в несколько раз снижен, то повышение ее даже на 437% — всего лишь выход на норму компетентности. Следует помнить, что активность NK-клеток оценивается не по их количеству, которое возрастает незначительно, а по числу актов цитолиза — уничтожения мутировавших или инфицированных клеток. Речь идет не о «подстегивании» иммунной системы, а о повышении ее компетентности, то есть способности различать «врагов». Компетентная иммунная система достигает больших результатов и гораздо меньшими усилиями. Производство линейки препаратов Трансфер Фактор началось в соединенных Штатах более пятнадцати лет назад. Компания 4 life , заинтересовавшись исследованиями специалистов, получила патент на производство этого иммуномодулятора. В нашей стране Трансфер Фактор сегодня чрезвычайно востребован и среди врачей, и среди простых людей. Трансфер Фактор также получил высочайшую оценку Министерства Здравоохранения Украины, которая отражена в методическом письме МЗ Украины от 29.12.2011г. «Эффективность применения Трансфер Факторов в комплексе иммунореабилитационных мероприятий». Сегодня у наших врачей появилась возможность следовать за природой, действовать в согласии с иммунной системой, а не за нее с помощью препарата Трансфер Фактор. Такой подход позволяет получать результаты, не достижимые прежде.

Наличие иммунитета организма – необходимая защита, которая действует как невосприимчивость к чужеродным агентам, в том числе инфекционным возбудителям.

Необходимость иметь иммунитет заложена натурой. Способность сопротивляться берет начало в наследственном факторе. При этом нельзя оставить без внимания приобретенную возможность протекции организма, которая создает барьер для проникновения и размножения в теле различного рода бактерий и вирусов, а также защищает от воздействия производимых ими продуктов. Но иммунитет необязательно является защитой от патогенно – активных агентов. Ведь попадание в тело любого чужеродного микроорганизма способно вызвать иммунологическую реакцию, вследствие чего агент будет подвержен защитному воздействию и в последующей – уничтожен.

Отличие иммунитета заключается в многообразии происхождения, признаках проявления, механизме и некоторых других особенностях. Зависимо от источника иммунитет бывает:

  • Врожденный;
  • Приобретённый;

Главными отличительными характеристиками невосприимчивости считаются: генезис, форма появления, механизм и другие факторы. В зависимости от возникновения, иммунитет может быть врожденным и приобретенным. Первый подразделяется на видового и естественного типа.

Иммунология

Термин «иммунитет» связан со способностью и функциями организма создавать природное препятствие для попадания в него отрицательных агентов инородного происхождения, а также предусматривает способы распознавания чужого во врожденном иммунитете. Существуют механизмы противодействия подобных вредоносных организмов. Разнообразие методов борьбы с опасными возбудителями обусловлено видами и формами иммунитета, которые различают по многообразию и характеризующим признакам.

В зависимости от происхождения и формирования, механизм защиты может иметь врожденный характер, который также разделяется на несколько направлений. Различают неспецифического, естественного, наследственного типа природную способность организма сопротивляться. При таком виде иммунитета факторы защиты в человеческом теле сформировались . Они способствуют борьбе с агентами неизвестного происхождения с момента рождения человека. Данный тип иммунной системы характеризует способность человеческого существа находиться устойчивым к всевозможным болезням, которым может быть, уязвим организм животного, растения.

Приобретенного типа иммунитет характеризуется наличием факторов предохранения, сформировавшимися на протяжении всего жизненного периода. Ненатуральная форма защиты организма подразделяется на естественный и . Вырабатывание первого начинается после того, как человек подвергся влиянию в результате которого в нем начали вырабатываться специальные клетки – антитела, которые оказывают противодействие агенту данного заболевания. Искусственный вид защиты связан с получением организмом уже заранее приготовленных ненатуральным путем клеток, которые были введены внутрь. Имеет место, когда форма вируса активна.

Качественные свойства

Жизненно необходимой функцией, которую выполняет врожденная иммунная система, является регулярная выработка организмом антител естественным способом. Они предназначены для обеспечения первичной реакции на появление инородных агентов в организме. Следует понимать, каковы основные различия врожденного и приобретенного иммунитета. Достаточно важным свойством естественного ответа организма в виде реакции – присутствие системы комплемента. Это так называемый комплекс, который предусматривает в крови наличие белка, обеспечивающего определение и первичную защитную реакцию на чужеродные агенты. Задачами такой системы является выполнение следующих функций:

  • Опсонизация – процесс соединения в поврежденной клетке комплексных элементов;
  • Хемотакисис – слияние сигналов в результате происходящей химической реакции, которая осуществляет привлечение других иммунных агентов;
  • Мембранотропный повреждающий комплекс, в котором белковые сочетания в комплименте отвечают за разрушение защитной мембраны агентов опсонизации;

Преимущественным свойством естественного типа реакции организма является проявление первичного предохранения, на которые влияют молекулярные факторы врожденного иммунитета, в результате чего организм получает данные о неизвестных для него клетках чужеродного происхождения. Впоследствии такого процесса происходит образование приобретенной реакции, которая в некоторых случаях распознания неизвестных организмов будет готова для оказания противодействия, при этом, не привлекая посторонние защитные факторы.

Процесс формирования

Говоря об иммунитете, то он присутствует, как первичные признаки, у каждого организма, и заложен на генетическом уровне. Имеет отличительные черты врожденного иммунитета, а также обладает свойством быть переданным наследственным путем. Человек особенен тем, что у него есть внутренняя способность организма оказывать сопротивление множеству заболеваний, которым уязвимы другие живые существа.

В процессе формирования врожденной защиты главным берётся период внутриутробного развития и последующий стадия вскармливания младенца после появления на свет. Фундаментальное значение имеют переданные новорожденному антитела, дающие начало первым защитным признакам организма. Если в естественный процесс формирования вмешаться или воспрепятствовать, то это приводит к нарушениям , и стать причиной иммунодефицитного состояния. Таких факторов, негативно влияющих на детский организм, множество:

  • излучения;
  • воздействие агентов химического происхождения;
  • болезнетворные микробы во время развития в утробе матери.

Признаки врожденной защиты организма

В чем же заключается предназначение врожденного иммунитета и как происходит процесс защитной реакции?

Комплекс всех признаков, которые характеризуют врожденный иммунитет, определяют особую функцию противоборства организма на вторжение посторонних агентов. Создание подобной защитной линии происходит в несколько этапов, которые настраивают иммунитет на реакцию на патогенные микроорганизмы. К барьерам первичного типа относят кожный эпителий и слизистую оболочку, так как они обладают функцией резистентности. Как результат попадания патогенного организма – воспалительный процесс.

Важной защитной системой является работа лимфатических узлов, которые борются с патогенами до момента попадания в кровеносную систему. Нельзя оставить без внимания свойства крови, которая реагирует на попадание инфекции в тело действием специальных форменных элементов. В случае когда не происходит гибель вредоносных организмов в крови, то инфекционное заболевание начинает формирование и поражает внутренние системы человека.

Развитие клеток

Защитная реакция, зависимо от механизма протекции, может быть выражена гуморальным или клеточным ответом. Объединение которых представляет собой целостную защитную систему. Реакция организма в среде жидкостей и внеклеточного пространства называется гуморальной. Такой фактор врожденного типа иммунной системы можно разделить на:

  • специфический – В – лимфоциты формируют иммуноглобулины;
  • неспецифический – вырабатываются жидкости, которые не обладают антибактерицидным свойством. Сюда причисляют кровяную сыворотку, лизоцим;

К относится система комплимента.

Процессом поглощения агентов инородного происхождения путем воздействия мембраны клеток называется фагоцитоз. Иначе говоря, участвующие в реакции молекулы дифференцируются на:

  • лимфоциты группы Т – отличаются большой продолжительностью жизни, и разделяются по разным функциям. К ним можно отнести регуляторы, киллеры натуральные;
  • лимфоциты группы И – отвечающие за выработку антител;
  • нейтрофилы – отличаются присутствием антибиотических белков, у которых имеются , что объясняет миграцию к очагу воспаления;
  • эозинофилы – принимают участие в процессе фагоцитоза и отвечают за нейтрализацию гельминтов;
  • базофилы – предназначены для реакции на появление раздражителя;
  • моноциты – клетки специального назначения, превращающиеся в различного вида макрофаги и обладающие функциями, такими как, возможность активизировать процесс фагоцитоза, регулировать воспаление.

Факторы, стимулирующие клетки

В последних отчетах ВОЗ значатся такие данные, что практически половина населения планеты не имеет достаточного количества важных иммунных клеток – натуральных киллеров, в организме. Этим обуславливается учащение случаев выявления инфекционных и онкологических заболеваний у пациента. Но медицина развивается стремительно, и уже разработаны и широко используются средства, которые способны стимулировать активность киллеров.

Среди таких веществ имеет место применения адаптогенов, которые отличаются общеукрепляющими свойствами, иммуномодуляторов, трансферфактоных белков, которые обладают наибольшей степенью результативности. Подобного типа , способствующие усилению врожденного иммунитета, можно обнаружить в желтке яйца или молозиве.

Эти стимулирующие вещества распространены и используются в медицинских целях, выделяются искусственно из источников природного происхождения. На сегодня трансферфакторные белки доступны и представлены медицинскими препаратами. Какова природа воздействия? Заключается она в помощи в системы ДНК, запуске защитного процесса исходя из особенностей иммунитета человека.

Изучив природу появления и формирования невосприимчивости к бактериям, различие типов, становится понятно, что для нормальной работы организма надо иметь . Необходимо различать особенности врожденного и приобретенного. Оба дейстсвуют в комплексе, что способствует помощи организма в борьбе с попавшими в него вредными микроэлементами.

Чтобы противостояние было сильным и осуществлялись защитные функции качественно, необходимо изъять неполезные привычки из жизни и стараться следовать здоровому образу существования, дабы исключить возможность разрушения деятельности «крепких» и «рабочих» клеток.

Важна в таком случае комплексность подхода. Прежде всего, изменения должны коснуться вашего образа жизни, питания, использование народных способов повышения иммунитета. До того как вирусная инфекция убьёт организм, следует подготовиться к вероятной атаке. Здесь нужны процедуры закаливания, как простого способа защиты.

Также практикуется хождение без обуви, но это необязательно ходьба по улице. Здесь начинают , но только не по ледяному полу. Это также считается принципом закаливания, ведь поступок направлен на запуск защитных процессов в организме при помощи действия на точки активизации на ступнях, что приводит в оживлению клетки иммунной системы.

Существует множество способов и методов естественной подготовки организма к возможному воздействию внешних факторов. Главное, чтобы процедуры не были противопоказаниями по причине наличия заболеваний, которые в комплексе с методами закаливания могут обернуться негативно для организма.

Является ферментом, разрушающим (лизирующим) мукополисахариды оболочек бактерий, особенно грамположительных. Он содержится в слезах, слюне, крови, слизистых оболочках дыхательных путей, кишечника и в различных тканях органов. У человека наиболее богаты лизоцимом (в граммах на 1 кг массы тела) лейкоциты (10) и слезы (7), менее - слюна (0,2), плазма крови (0,2). Лизоцим играет важную роль в местном иммунитете. Он действует в содружестве с секреторными иммуноглобулинами. Доказано высокое содержание лизоцима в сыворотке крови к рождению, что даже превышает его уровень у взрослого человека.

Пропердин

Является одним из важных факторов, обеспечивающих устойчивость организма. Он принимает участие в альтернативном пути активации комплементарной реакции. Содержание пропердина в момент рождения - низкое, но буквально в течение первой недели жизни быстро нарастает и держится на высоком уровне на протяжении всего детства.

Большое значение в неспецифической защите придается интерфероном. Их существует несколько в соответствии с основными клетками-производителями. Выделяют две группы интерферонов: I типа (интерферон-α, интерферон-β и интерферон-ω) и II типа - интерферон-γ. Интерфероны I типа - это «доиммунные» интерфероны, участвующие в противовирусной и противоопухолевой защите. Интерферон II типа (интерферон-γ) - это «иммунный» интерферон, активирующий Т- и В-лимфоциты, макрофаги и NK- клетки.

Ранее считалось, что интерферон-α («лейкоцитарный» интерферон) продуцируется мононуклеарными фагоцитами. В настоящее время установлено, что за синтез данного типа отвечают в основном лимфоидные дендритные клетки типа DC2. Интерферон-β, или «фибробластный», образует белковые структуры, весьма сходные с интерфероном-α. Интерферон-γ, или иммунный интерферон, в своей структуре имеет очень мало общего с двумя первыми. Он возникает (продуцируется) в Т-лимфоидных клетках (Thl и CD8+ цитотоксических лимфоцитах) и NK-клетках. Интерфероны с полным правом могут относиться к неспецифическим факторам защиты, так как их индукция может быть вызвана очень широким кругом как инфекционных агентов, так и митогенов, а достигаемая после индукции резистентность также носит широкий неспецифический характер.

Интерфероны обладают свойством подавлять размножение инфекционных и онкогенных вирусов. Они обладают видовой специфичностью и низкой антигенной активностью. Их образование в организме обычно идет параллельно с проникновением вируса и началом лихорадочной реакции. Их продуцируют клетки, первично поражаемые вирусами. Наиболее активными продуцентами интерферона являются лейкоциты. Интерфероны проявляют свое действие на внутриклеточном этапе репродукции вируса. В частности, доказано, что интерфероны могут блокировать образование РНК, необходимой для репликации вирусов.

Способность к образованию интерферона сразу после рождения высокая, но у детей 1 года жизни она снижается, и только с возрастом постепенно увеличивается, достигая максимума к 12-18 годам. Особенность возрастной динамики образования интерферона является одной из причин повышенной восприимчивости детей раннего возраста к вирусной инфекции и ее более тяжелого течения, особенно острых респираторных инфекций.

Система комплемента

Система комплемента состоит из трех параллельных систем: классической, альтернативной (подсистема пропердина) и лектиновой. Каскадная активация этих систем имеет разнонаправленную функцию. Активированные компоненты системы комплемента усиливают реакции фагоцитоза и лизиса бактериальных клеток как в независимом режиме неспецифической иммунной защиты, так и в режиме сочетания с действием антигенспецифических антител. Система состоит из 20 белковых компонентов, 5 мембранных регуляторных белков и 7 мембранных рецепторов. Неспецифическая активация классического пути происходит под влиянием С-реактивного протеина и трипсиноподобных ферментов, альтернативный путь активируется эндотоксинами и грибковыми антигенами. Пектиновый путь активации инициируется манозосвязывающим белком - лектином крови, по структуре похожим на компонент С1q комплемента. Контакт манозной поверхности микробов с лектином крови приводит к образованию С3-конвертазы (С4β2а) по классическому пути активации системы комплемента. Система комплемента проделывает свое основное становление в отрезке между 8-й и 15-й неделей гестации, но и к моменту рождения общее содержание комплемента в пуповинной крови равно только половине его содержания в крови матери. Компоненты С2 и С4 синтезируются макрофагами, С3 и С4 - в печени, легких и в перитонеальных клетках, С1 и С5 - в кишечнике, С-ингибитор - в печени.

Белки системы комплемента способны к развертыванию каскадных реакций взаимоактивации, примерно аналогичных с каскадными реакциями в белках системы свертывания крови, в системе фибринолиза или кининогенеза. Основные участники системы классического пути активации обозначаются как «компоненты» системы - буквой «С»; участники альтернативного пути активации названы «факторами». Наконец, выделена группа регуляторных белков системы комплемента.

Компоненты, факторы и регуляторные белки системы комплемента сыворотки крови

Первый компонент комплемента включает в себя три субкомпонента: С1q, С1r и Сβ. Компоненты комплемента находятся в крови в виде предшественников, которые не соединяются со свободными антигенами и антителами. Взаимодействие между С1q и агрегированными иммуноглобулинами в или М (комплекс антиген + антитело) запускает активацию классического пути комплементарной реакции. Другой системой активации комплемента является альтернативный путь, основой которого является пропердин.

В результате активации всей системы комплемента проявляется его цитолитическое действие. На конечном этапе активации системы комплемента образуется мембраноатакующий комплекс, состоящий из компонентов комплемента. Мембраноатакующий комплекс внедряется в мембрану клетки с образованием каналов диаметром 10 нм. Наряду с цитолитическими компонентами С3а и С5а являются анафилатоксинами, так как вызывают выделение гистамина тучными клетками и усиливают хемотаксис нейтрофилов, а С3с усиливает фагоцитоз нагруженных комплементом клеток. Альтернативный путь активации системы комплемента обеспечивает элиминацию из организма вирусов и измененных эритроцитов.

Система комплемента обладает защитной функцией, но может также способствовать повреждению собственных тканей организма, например, при гломерулонефрите, системной красной волчанке, миокардите и др. Общая комплементарная активность выражается в гемолитических единицах. Активность системы комплемента у новорожденных низкая и, по некоторым данным, составляет около 50% от активности у взрослых (это касается С1, С2, С3, С4). Однако в первую неделю жизни содержание комплемента в сыворотке крови быстро нарастает, и с возраста 1 мес не отличается от такового у взрослых.

В настоящее время описан ряд заболеваний, в основе которых лежит генетически обусловленная недостаточность различных компонентов комплемента. Наследование - чаще аутосомно-рецессивное (С1r, С2, С3, С4, С5, С6, С7, С3β-ингибитора); только недостаточность С1-ингибитора - аутосомно-доминантное.

Недостаточность С1-ингибитора клинически проявляется ангионевротическими отеками, которые обычно безболезненны. При этом, как правило, не наблюдается покраснения кожи. Если отек локализуется в гортани, это может вызывать дыхательную недостаточность вследствие обструкции. Если аналогичная картина возникает в кишке (чаще в тонкой), то у больного появляются боли, рвота (нередко с желчью), частый водянистый стул. При недостаточности С1r, С2, С4, С5 возникают клинические проявления, свойственные системной красной волчанке (СКВ-синдром), геморрагическому васкулиту (болезнь Шенлейна-Геноха), полимиозиту, артритам. Снижение содержания С3, С6 проявляется рецидивирующими гнойными инфекциями, включая пневмонию, сепсис, отиты.

Ниже будут рассмотрены структуры риска различных заболеваний, связанного с дефицитом факторов, компонентов или регулирующих белков системы комплемента.

Фагоцитоз и естественный иммунитет

Учение о фагоцитозе связано с именем И. И. Мечникова. Фагоцитоз филогенетически является одной из наиболее древних реакций защиты организма. В процессе эволюции фагоцитарная реакция значительно усложнилась и усовершенствовалась. Фагоцитоз является, по-видимому, ранним защитным механизмом плода. Система неспецифического иммунитета представлена фагоцитами, циркулирующими (лейкоциты полиморфно-ядерные, моноциты, эозинофилы), а также фиксированными в тканях (макрофаги, клетки селезенки, звездчатые ретикулоэндотелиоциты печени, альвеолярные макрофаги легких, макрофаги лимфатических узлов, клетки микроглии головного мозга). Клетки этой системы появляются в относительно ранние сроки развития плода - от 6-й до 12-й недели гестации.

Различают микрофаги и макрофаги. Микрофагами являются нейтрофилы, а макрофагами - крупные мононуклеарные клетки, либо фиксированные тканевые, либо циркулирующие, относящиеся к моноцитам. Несколько позже у плода формируется макрофагальная реакция.

Лейкоциты с полиморфными ядрами имеют срок полужизни всего 6-10 ч. Их функция сводится к захвату и внутриклеточному перевариванию гноеродных бактерий, некоторых грибов и иммунных комплексов. Однако для реализации этой функции необходим целый комплекс факторов регуляции и «наведения» или прицеливания миграции полиморфно-ядерных лейкоцитов. Этот комплекс включает в себя молекулы адгезии: селектины, интегрины и хемокины. Собственно процесс уничтожения микроорганизмов осуществляется посредством включения оксидазных систем, включая супероксиды и пероксиды, а также гидролитических ферментов гранул: лизоцима и миелопероксидазы. Важную роль играют также короткие пептиды, называемые «дефенсинами». Их молекула состоит из 29-42 аминокислот. Дефенсины способствуют нарушению целости мембран бактериальных клеток и некоторых грибов.

На всем протяжении фетального периода и даже полученные из периферической пуповинной крови лейкоциты новорожденных обладают низкой способностью к фагоцитозу и малой подвижностью.

Если поглотительная способность фагоцитов у новорожденных развита достаточно, то завершающая фаза фагоцитоза еще не совершенна и формируется в более поздние сроки (через 2-6 мес). Это имеет отношение в пер вую очередь к патогенным микроорганизмам. У детей первых 6 мес жизни содержание неферментных катионных белков, участвующих в завершающей стадии фагоцитоза, низкое (1,09+0,02), затем оно повышается (1,57±0,05). К катионным белкам относятся лизоцим, лактоферрин, миелопероксидаза и др. На протяжении жизни процент фагоцитоза, начиная с 1-го месяца жизни, незначительно колеблется, составляя около 40. Оказалось, что пневмококки, Klebsiella pneumoniae, Haemophilus influenzae не подвергаются фагоцитозу, чем, вероятно, и объясняется более высокая заболеваемость детей, особенно раннего возраста, пневмонией с ее более тяжелым течением, дающим нередко осложнения (деструкция легких). Кроме того, выявлено, что стафилококки и гонококки даже сохраняют способность размножаться в прото-плазме фагоцитов. Вместе с тем фагоцитоз представляет собой очень действенный механизм противоинфекционной защиты. Эта действенность определяется еще и большим абсолютным количеством как тканевых, так и циркулирующих макрофагов и микрофагов. Костный мозг продуцирует до (1 ...3)х10 10 нейтрофилов в сутки, полный срок их созревания составляет около 2 нед. При инфекции продукция нейтрофильных лейкоцитов может существенно возрастать и сроки созревания уменьшаться. Кроме того, инфекция приводит к «рекрутированию» депонированных в костном мозге лейкоцитов, число которых в 10-13 раз больше, чем в циркулирующей крови. Активность стимулированного нейтрофила проявляется в перестройке процессов метаболизма, миграции, адгезии, выбросе заряда короткоцепочечных белков - дефенсинов, осуществлении кислородного «взрыва», поглощении объекта, образовании пищеварительной вакуоли (фагосомы) и секреторной дегрануляции. Активность фагоцитоза повышается эффектом опсонизации, в котором кооперативно участвуют сам фагоцит, объект фагоцитоза и белки с опсонизирующими свойствами. Роль последних могут выполнять иммуноглобулин G, С3, С-реактивный протеин и другие белки «острой фазы» - гаптоглобин, фибронектин, кислый α-гликопротеин, α2- макроглобулин. Очень важна опсонизирующая роль фактора Н системы комплемента. С дефицитом этого фактора связывают недостаточную эффективность фагоцитарной защиты у новорожденных детей. В регулировании реакций фагоцитоза существенное участие принимает и эндотелий сосудов. Регуляторами его участия в этом процессе выступают молекулы адгезии: селектины, интегрины и хемокины.

Тканевые долгоживущие макрофаги, производные от моноцитов, акти-вируются преимущественно интерфероном-γ и Т-лимфоцитами. Последние реагируют с перекрестным антигеном CD40 оболочки фагоцита, приводя к экспрессии синтеза оксида азота, молекул CD80 и CD86, а также продукции интерлейкина 12. Именно эти цепи необходимы для презентации антигена в цепи формирования специфического клеточного иммунитета. Таким образом, в настоящее время систему фагоцитоза нельзя рассматривать только как эволюционно-примитивную линию первичной неспецифической защиты.

У детей могут наблюдаться первичные и вторичные нарушения фагоцитоза. Первичные нарушения могут касаться как микрофагов (нейтрофилов), так и макрофагов (мононуклеаров). Они могут передаваться из поколения в поколение, т. е. наследоваться. Передача нарушений фагоцитарной реакции может быть сцеплена с Х-хромосомой (хроническая гранулематозная болезнь) или аутосомальной, чаще рецессивного типа, что проявляется снижением бактерицидных свойств крови.

Обычно нарушения фагоцитарных реакций проявляются увеличением лимфатических узлов, частыми кожными и легочными инфекциями, остеомиелитом, гепатоспленомегалией и др. При этом особенно высока склонность детей к заболеваниям, вызываемым Staphylococcus aureus, Escherichia coli, Candida albicans (молочница).

Исследование относительного и абсолютного количества морфологических особенностей фагоцитирующих клеток, цитохимических характеристик - активности миелопероксидазы, глюкозо-6-фосфатдегидрогеназы и особенностей функциональных (например, подвижности микро- и макрофагов) может быть аргументом для предположения, что в основе патологического процесса лежит нарушение фагоцитоза. Вторичное нарушение фагоцитоза, как правило, приобретенного характера, развивается на фоне медикаментозного лечения, например длительного применения цитостатических препаратов. Как первичные, так и вторичные нарушения фагоцитоза могут определяться как преимущественные нарушения хемотаксиса, адгезии, внутриклеточного расщепления объекта. Наследственные или приобретенные после тяжелых заболеваний или интоксикаций нарушения системы фагоцитоза могут определять повышение частоты некоторых заболеваний и своеобразие их клинических проявлений.

Ответы по иммунологии,письменная часть

1.Современное определение иммунитета.Понятие о приобретенном и врожденном иммунитете .

Иммунитет - совокупность физиологических процессов и механизмов, направленных на сохранение антигенного гомеостаза организма от биологически активных веществ и существ, несущих генетически чужеродную антигенную информацию или от генетически чужеродных белковых агентов.

Под иммунитетом, по определению академика Р.В. Петрова, понимают «Способ защиты организма от живых тел и веществ, несущих признаки генетически чужеродной информации (включая микроорганизмы, чужеродные клетки, ткани или генетически изменившиеся собственные клетки, в том числе опухолевые)».

Врожденный и приобретенный иммунитет представляет собой две взаимодействующие части одной системы, обеспечивающей развитие иммунного ответа на генетически чужеродные субстанции.

Врожденный иммунитет - наследственно закрепленная система защиты многоклеточных организмов от любых патогенных и непатогенных микроорганизмов, а также эндогенных продуктов тканевой деструкции.

Врождённый иммунитет - способность организма обезвреживать чужеродный и потенциально опасный биоматериал (микроорганизмы , трансплантат , токсины , опухолевые клетки , клетки, инфицированные вирусом ),

существующая изначально, до первого попадания этого биоматериала в организм.

Система врождённого иммунитета намного более эволюционно древняя, чем система приобретённого иммунитета , и присутствует у всех видов растений и животных, но подробно изучена только у позвоночных . По сравнению с системой приобретённого иммунитета система врождённого активируется при первом появлении патогена быстрее, но распознаёт патоген с меньшей точностью. Она реагирует не на конкретные специфические антигены , а на определённые классы антигенов, характерные для патогенных организмов (полисахариды клеточной стенки бактерий, двунитевая РНК некоторых вирусов и т.п.).

У врождённого иммунитета есть клеточный (фагоциты , гранулоциты ) и гуморальный (лизоцим , интерфероны , система комплемента , медиаторы воспаления ) компоненты. Местная неспецифическая иммунная реакция иначе называется воспалением .

Приобретённый иммунитет - способность организма обезвреживать чужеродные и потенциально опасные микроорганизмы (или молекулы токсинов), которые уже попадали в организм ранее. Представляет собой результат работы системы высокоспециализированных клеток (лимфоцитов ), расположенных по всему организму. Считается, что система приобретённого иммунитета возникла у челюстноротых позвоночных . Она тесно взаимосвязана с гораздо более древней системой врождённого иммунитета , которая является основным средством защиты от патогенных микроорганизмов у большинства живых существ.

Различают активный и пассивный приобретённый иммунитет. Активный может возникать после перенесения инфекционного заболевания или введения в организм вакцины . Образуется через 1-2 недели и сохраняется годами или десятками лет. Пассивно приобретённый возникает при передаче готовых антител от матери к плоду через плаценту или с грудным молоком , обеспечивая в течение нескольких месяцев

невосприимчивость новорожденных к некоторым инфекционным заболеваниям. Такой иммунитет можно создать и искусственно, вводя в организм иммунные сыворотки , содержащие антитела против соответствующих микробов или токсинов (традиционно используют при укусах ядовитых змей).

Как и врождённый иммунитет, приобретённый иммунитет разделяют на клеточный (T-лимфоциты) и гуморальный (антитела, продуцируемые B-лимфоцитами; комплемент является компонентом как врождённого, так и приобретённого иммунитета).

2.Иммунная система

Иммунная система представляет собой совокупность специализированных органов, тканей и клеток, способных выполнять функцию иммунитета и другие жизненно важные

функции, такие, как регуляция и координация межсистемных связей. По крайней мере три системы: нервная, эндокринная и иммунная - составляют основу жизнедеятельности организма. Иммунологическая индивидуальность обеспечивает сохранение каждой особи в пределах вида.

Функция иммунной системы (а более конкретно - иммунитет) выходит далеко за рамки защиты от инфекционных заболеваний. Противораковый, трансплантационный иммунитет, иммунные взаимоотношения мать-плод, ликвидация пострадиационных последствий, неблагоприятных воздействий экологических факторов, иммунопрофилактика инфекционных и неинфекционных заболеваний и многие другие процессы реализуются иммунной системой.

Исходя из этого уникальность физиологической роли иммунной системы заключается в контроле генетического постоянства внутренней среды организма в период онтогенетического развития. Всё генетически чужеродное для конкретного организма элиминируется с участием его иммунной системы.

Иммунная система высокоспециализирована и обладает целым комплексом уникальных свойств, многие из которых не дублируются в других системах организма.

Следующие феномены определяют основные свойства иммунной системы:

высокая специфичность проявляется высокоспецифичным и селективным связыванием антител с конкретным антигеном, индуцировавшим их образование. Лимфоциты с помощью антигенспецифических рецепторов распознают антигенные молекулы, различающиеся 1-2 аминокислотными остатками, и удаляют их из организма. Упрощенная формула иммунной специфичности: «один антиген - одно антитело - один клон лимфоцитов»;

высокая степень чувствительности -

иммунокомпетентные клетки осуществляют распознавание антигена на уровне отдельных молекул. Взаимодействие «антиген-антитело» - одна из наиболее высокочув ствительных биологических реакций. Тесты, основанные на

(иммуноферментные, радиоиммунные и др.), позволяют идентифицировать пикограммовые и близкие к ним количества анализируемого вещества;

иммунологическая индивидуальность - для каждого организма характерен свой, контролируемый генетически тип иммунного ответа. Основной постулат иммуногенетики

- «конкретность иммунного ответа»;

Клональный принцип организации иммунокомпетентных клеток, проявляющийся в способности всех клеток в пределах отдельного клона отвечать только на одну антигенную детерминанту. Согласно клонально-селекционной теории Ф. Бернета, в иммунной системе формируются клоны лимфоцитов, способные распознать огромное количество (10 9 -10 и ) вариантов антигенных молекул, составляющих так называемый антигенный репертуар;

Иммунологическая память - способность иммунной системы (клеток памяти) отвечать ускоренно и усиленно на повторное введение антигена. Это свойство иммунной системы составляет основу анамнестического ответа на повторный контакт с антигеном (например, при инфекции или вакцинации);

Иммунная толерантность - специфическая неотвечаемость на антигены, в том числе на антигены собственного организма (аутоантигены). Нарушение этого свойства приводит к срыву толерантности и формированию аутоиммунной патологии;

Высокая способность иммунной системы к регенерации -

свойство иммунной системы к поддержанию гомеостаза лимфоцитов за счет пополнения пула «наивных» клеток и контроля популяции клеток памяти. Нарушение гомеостаза лимфоцитов (лимфопения) лежит в основе многих заболеваний, в первую очередь иммунодефицитных; -способность клеток иммунной системы к рециркуляции - перемещение клеток через кровеносную и лимфатическую систему обеспечивает единство и целостность иммунной системы. Лимфоциты, моноциты, нейтрофилы и другие клетки способны мигрировать через эндотелий кровеносных и лимфатических сосудов в центральные и периферические органы и ткани иммунной системы, а также в различные ткани в норме и при патологии (чаще воспаление). В циркуляции могут находиться практически все клеточные элементы иммунной системы, в том числе гемопоэтические стволовые клетки;

-«двойное распознавание» антигена Т-лимфоцитами - уникаль ная способность Т-лимфоцита распознавать чужеродные антигенные пептиды в ассоциации с собственными молекулами главного комплекса гистосовместимости (у человека с HLA). Подобный механизм высокоспециализирован и отсутствует в других системах организма; - неразборчивость иммунной системы. Иммунные механизмы не всегда работают во благо: в ряде случаев они могут оказывать иммуноагрессивное действие в собственном организме, вызывая тяжелую

патологию: аллергические, аутоиммунные, иммунокомплексные заболевания и др.;

Регуляторное действие на другие системы организма.

Иммунная система через прямые межклеточные контакты и опосредованно через

огромное количество медиаторных молекул (цитокины, хемокины, гормоны тимуса, пептиды и др.) оказывает регуляторное воздействие практически на все системы организма. Нарушение регуляторных механизмов лежит в основе многих заболеваний человека, часто с поражением органов и тканей, формально не включаемых в иммунную систему (например, поражение суставов, печени, кожи, ЦНС и др.). От того, насколько полноценно функционирует иммунная система, зависят многие процессы нормальной жизнедеятельности организма. Эта функция может быть непосредственно не связана с иммунитетом, но в процессе иммунного ответа выработка иммуноцитокинов значительно усиливается, и их действие распространяется на реализацию регуляторных воздействий как внутри, так и за пределами иммунной системы. Современная иммунология большое внимание уделяет изучению роли цитокинов в межсистемных регуляторных процессах.

Таким образом, наряду с нервной и эндокринной иммунная система служит одной из интегрирующих систем регуляции, действующих на уровне целого организма.

3.объекты исследования в иммунологии

1.1. ИНБРЕДНЫЕ ЖИВОТНЫЕ

Для проведения фундаментальных исследований в иммунологии лучший объект - инбредные мыши. Инбредные животные - это животные, полученные путем инбридинга (in breed - выводить породу, разводить), т.е. последовательных близкородственных скрещиваний с целью получения гомозиготного и генетически идентичного потомства. Среди потомков для дальнейших скрещиваний сначала отбирают особей по признакам внешнего сходства, в последующих поколениях уже тестируют на совпадение групп крови и приживление кожных лоскутов. Через 20 поколений и более такой селекции получают мышей с весьма высокой степенью гомозиготности, обозначаемых как чистая линия, в пределах которой все животные генетически почти идентичны (например, как однояйцевые близнецы у человека).

Главная цель выведения чистых линий мышей и исследований на них - получение возможности многократного повторения экспериментов на генетически одинаковых организмах, т.е. обеспечение воспроизводимости результатов исследований в высоком смысле этого понятия, что полностью исключено при решении многих иммунологических задач с использованием беспородных животных. Подобные проблемы существуют при оценке результатов иммунных процессов у человека.

Мыши стали исключительными экспериментальным животными в иммунологии в силу ряда причин, главные из которых следующие:

1) короткий срок беременности (21 сут) и множественное потомство от каждой самки (5-8 детенышей в одни роды) позволяют весьма быстро вывести чистые линии, что важно по вышеназванным причинам;

2) себестоимость содержания мышей по сравнению с таковой других млекопитающих наименьшая;

3) структура и функция иммунной системы мыши и человека во многом сходны;

4) выведение чистых линий мышей показало, что, например, некоторые из них (несмотря на гомозиготность) весьма крепкие и здоровые, т.е. не всякий инбридинг приводит к вырождению.

Кроме того, путем целенаправленного отбора тех или иных свойств созданы многочисленные линии мышей с точно заданными характеристиками, и это позволяет выбирать особей, необходимых для достижения конкретных научных целей. Характеристики животных разных линий занесены в соответствующие документы; на них ориентируются питомники по разведению чистолинейных мышей, имеющиеся во всех странах, где успешно занимаются проблемами экспериментальной иммунологии. Из наиболее прославленных питомников хотим упомянуть Джексоновскую лабораторию (The Jackson Laboratory) в США. Ежегодно она поставляет в университеты, медицинские институты и научно-исследовательские лаборатории всего мира приблизительно 2 млн животных 2500 разных линий, стоков и животных-моделей. Около 97% этих животных можно приобрести только в Джексоновской лаборатории. В каждом питомнике

разводимые и поддерживаемые линии мышей имеют паспорт, систематизированы в соответствующих базах данных и доступны для широкого применения. Известен гаплотип (Н-2) мышей разных линий, их окрас, поведенческие характеристики, особенности функционирования иммунной системы и прочие свойства, необходимые не только для иммунологических исследований, но и исследований в других областях биологии и медицины (онкология, фармакология, экология и т.д.).

БИОЛОГИЧЕСКИЕ МАТЕРИАЛЫ

ДЛЯ ИССЛЕДОВАНИЙ

Для исследования иммунной системы используются следующие биологические материалы.

1. Цельная периферическая кровь.

2. Сыворотка крови - жидкая фракция крови, освобожденная от фибриногена.

3. Плазма крови - жидкая фракция крови, содержащая фибриноген, следовательно, способная к образованию сгустков фибрина.

4. Клетки крови, отделенные от жидкой фракции.

5. Цереброспинальная жидкость.

6. Синовиальная жидкость.

7. Бронхоальвеолярный лаваж.

8. Выделения слизистых секретов половых органов (из канала шейки матки, влагалища, семенная жидкость).

9. Выделения из носа (смывы или адсорбция на пористые материалы).

10. Моча.

11. Супернатанты, полученные от культивируемых in vitro клеток

12. Гомогенаты тканей (биопсия или post mortem).

13. Цитоплазматические и ядерные компоненты клеток. Биологический материал разного происхождения отличается по

биохимическому составу, ионной силе, вязкости. Все эти

При появлении в организме чужеродного объекта на защиту здоровья человека становится иммунитет. От того, насколько он развит, зависит риск заражения инфекционными заболеваниями. Таким образом, иммунитет - это способность организма сопротивляться чужеродным вторжениям.

Находится в тесном взаимодействии с другими системами в организме человека. Поэтому, например, имеющиеся у него нервные или эндокринные заболевания будут заметно снижать иммунитет, а низкий иммунитет, в свою очередь, способен весь организм подвергнуть опасности.

Описываемая защита организма делится на два врожденный и приобретенный. Далее мы подробнее расскажем об их особенностях и способах действия.

Врожденная защита организма

Каждый человек рождается со своими защитными функциями, которые и составляют иммунитет. Врожденный иммунитет передается по наследству и сопровождает человека всю жизнь.

При рождении ребенок из стерильной материнской утробы попадает в новый для него мир, где его сразу же начинают атаковать новые и совсем не дружелюбные микроорганизмы, способные серьезно навредить здоровью малыша. Но он не заболевает сразу же. Это как раз и происходит потому, что в борьбе с такими микроорганизмами организму новорожденного помогает естественный врожденный иммунитет.

Каждый организм борется своими силами за внутреннюю безопасность. Система врожденного иммунитета достаточно сильная, однако она напрямую зависит от наследственности конкретного человека.

Формирование защиты организма

Врожденный иммунитет начинает свое формирование, когда ребенок находится в утробе матери. Уже со второго месяца беременности закладываются частицы, которые будут отвечать за безопасность ребенка. Они вырабатываются из стволовых клеток, потом попадают в селезенку. Это фагоциты - клетки врожденного иммунитета. Они работают индивидуально и не имеют клонов. Их основную функцию составляет поиск враждебных объектов в организме (антигенов) и нейтрализация их.

Названный процесс происходит с помощью определенных механизмов фагоцитоза:

  1. Фагоцит движется к антигену.
  2. Прикрепляется к нему.
  3. Активируется мембрана фагоцита.
  4. Частица либо втягивается в клетку, а края мембраны смыкаются над ней, либо заключается в образованные псевдоподии, обволакивающие ее.
  5. В вакуоль с заключенной в ней чужеродной частицей входят лизосомы, содержащие пищеварительные ферменты.
  6. Антиген уничтожается и переваривается.
  7. Продукты деградации выбрасываются из клетки.

В организме существуют также цитокины - сигнальные молекулы. При обнаружении опасных объектов именно они вызывают фагоциты. Используя цитокины, фагоциты могут вызвать на помощь другие фагоцитные клетки к антигену и активировать спящие лимфоциты.

Защита в действии

В степени сопротивляемости организма к инфекциям важную роль играет иммунитет. Врожденный иммунитет в таких случаях обеспечивает защиту организма на 60 %. Это происходит с помощью следующих механизмов:

  • наличия в организме природных барьеров: слизистых оболочек, кожи, сальных желез и т. п.;
  • работы печени;
  • функционирования так называемой состоящей из 20 белков, синтезированных печенью;
  • фагоцитоза;
  • интерферона, NK-клеток, NKT-клеток;
  • противовоспалительных цитокинов;
  • естественных антител;
  • противомикробных пептидов.

Унаследованная способность уничтожать чужеродные вещества, как правило, выступает первой линией защиты здоровья человека. Механизмы врожденного иммунитета имеют такую особенность, как наличие эффектов, которые быстро обеспечивают деструкцию патогена, без подготовительных этапов. Слизистые оболочки выделяют слизь, которая затрудняет возможное прикрепление микроорганизмов, а движение ресничек очищает дыхательный тракт от чужеродных частичек.

Врожденный иммунитет не изменяется, он контролируется генами и наследуется. NK-клетки (так называемые натуральные киллеры) врожденной защиты убивают патогены, образующиеся в организме, - это могут быть носители вируса или опухолевые клетки. Если количество и активность NK-клеток падает, болезнь начинает прогрессировать.

Приобретенный иммунитет

Если врожденный иммунитет присутствует у человека от рождения, то приобретенный появляется в процессе жизни. Он бывает двух типов:

  1. Естественно полученный - формирующийся в процессе жизни как реакция на попадающие в организм антигены и патогены.
  2. Искусственно приобретенный - формирующийся в результате вакцинирования.

Антиген вводится вакциной, и организм отвечает на его присутствие. Распознав «врага», организм вырабатывает для его устранения антитела. Кроме того, на некоторое время данный антиген остается в клеточной памяти, и в случае его нового вторжения он будет так же уничтожен.

Таким образом, в организме существует «иммунологическая память». Приобретенный иммунитет может быть «стерильным», то есть сохраняться и пожизненно, однако в большинстве случаев он существует до тех пор, пока в организме находится вредный возбудитель.

Принципы защиты врожденного и приобретенного иммунитета

Принципы защиты имеют одно направление - уничтожение вредоносных объектов. Но при этом врожденный иммунитет борется с опасными частичками с помощью воспаления и фагоцитоза, а приобретенный использует антитела и иммунные лимфоциты.

Работают эти две защиты взаимосвязано. Система комплимента является между ними посредником, с ее помощью обеспечивается непрерывность иммунного ответа. Так, NK-клетки являются частичкой врожденного иммунитета, при этом они продуцируют цитокины, которые, в свою очередь, регулируют функцию Т-лимфоцитов, относящихся к приобретенному.

Повышение защитных свойств

Приобретенный иммунитет, врожденный иммунитет - все это единая взаимосвязанная система, а значит, для ее укрепления необходим комплексный подход. Необходимо заботиться об организме в целом, этому способствует:

  • достаточная физическая активность;
  • правильное питание;
  • благоприятная окружающая обстановка;
  • поступление в организм витаминов;
  • частое проветривание помещения и поддержание в нем благоприятной температуры и влажности.

Питание тоже играет не последнюю роль в эффективности иммунной системы. Чтобы она работала четко, в рационе должны присутствовать:

  • мясо;
  • рыба;
  • овощи и фрукты;
  • морепродукты;
  • кисломолочные продукты;
  • зеленый чай;
  • орехи;
  • крупы;
  • бобовые.

Заключение

Из сказанного выше понятно, что для нормальной жизнедеятельности человека необходим хорошо развитый иммунитет. Врожденный иммунитет и приобретенный действуют взаимосвязано и помогают организму избавляться от проникших в него вредных частиц.А для их качественной работы необходимо отказаться от вредных привычек и придерживаться здорового образа жизни, чтобы не нарушать жизнедеятельность «полезных» клеток.

Загрузка...