Польза натуральных продуктов. Витамины, макроэлементы

Классификация математических моделей в зависимости от оператора модели. Математические модели и их классификация Какие математические модели относятся к первому уровню

Классификация математических моделей до настоящего времени остается открытым вопросом и дается разными учеными в своей, значительно или незначительно отличающейся интерпретации. Существует несколько признаков классификации моделей, а следовательно, и систем. В большинстве научных источников на верхнем уровне разделения они классифицируются по следующим признакам (рис. 2.2): 1) цели создания; 2) способу представления; 3) сфере применения; 4) фактору времени.

Учебные модели разрабатываются как наглядные пособия, тренажеры, обучающие программы.

Опытные модели представляют собой уменьшенные или увеличенные копии реального объекта. Часто их называют натурными и используют для исследования объекта и прогнозирования его будущих характеристик до создания реального объекта. Это могут быть макеты зданий, уменьшенная копия корабля, программа, имитирующая работу магазина, и т.д.

Рис. 2.2.

Исследовательские модели предназначены для исследования процессов и явлений. Они могут быть представлены прибором, стендом, формулами и т.д.

Игровые модели - это военные, экономические, спортивные, деловые игры. Применяются для отработки поведения объекта в различных условиях, проигрывая их с учетом возможной реакции со стороны конкурента, союзника или противника. Распространено их применение в военном деле и при подготовке пилотов, водителей, моряков и т.д.

Знаете ли вы?

Игровая модель может выглядеть так: первая сторона (игрок А) выбирает один из трех типов вооружения - А, А 2 , А 3 , а противник (игрок В) - один из трех видов самолетов: B t , В 2 , В у Цель В - прорыв фронта обороны, цель А - поражение самолета. Вероятность поражения самолета В } вооружением А , равна 0,5; самолета В 2 вооружением А , равна 0,6; самолета В } вооружением А , равна 0,8 и т.д. Необходимо определить наилучшие стратегии поведения каждого игрока.

Статическая модель - это модель, учитывающая основные показатели на текущий момент времени без учета их изменения в дальнейшем.

Динамическая модель - как правило, учитывает фактор времени и ее показатели в каждый момент времени зависят от показателей, полученных на предыдущем этапе моделирования.

На втором уровне классификации рассматривают деление моделей в группе признака «Способ представления». Отдельно классифицируют идеальные и материальные модели.

Материальные (физические) модели - это предметные модели (рис. 2.3), которые могут отражать внешнее свойство и внутреннее устройство реальных объектов, процессов и явлений внутри объекта-оригинала или инициируемых им. В материальной модели устройство, свойства и связи объекта-оригинала точно воспроизводят по степени необходимости для экспериментального познания поведения объекта и его реакции.


Рис. 2.3.

Идеальные (абстрактные) модели не имеют реального воплощения (рис. 2.4). Эти модели основаны не на материальной аналогии между моделью и изучаемым объектом, а на идеальной, т.е. мыслимой, связи между ними (чучела птиц, географические карты, игрушечный трактор, макет многоступенчатой ракеты и др. - это материальные модели. Ноты, химические формулы, формула расчета прибыли, схемы, графики, устные и письменные описания объекта, в том числе с использованием иллюстраций, - это идеальные модели). Идеальные модели предназначены для теоретического познания окружающей среды, их основу составляет информация.

Натурная модель - это реальные исследуемые объекты, которые являются макетами и опытными образцами. Натурные модели имеют полную адекватность с объектом-оригиналом, что обеспечивает высокую точность и достоверность результатов моделирования; другими словами, модель натурная, если она есть, - это материальная копия объекта моделирования 1 . В то же время создание и эффективное исследование таких моделей возможно лишь для сравнительно узкого класса систем ввиду дороговизны данного подхода и возможности присутствия у реальной системы свойств, затрудняющих анализ требуемых характеристик.


Рис. 2.4.

Квазинатурная модель - это соединение физической и математической моделей. Этот вид моделей используется, когда математическая или физическая модель части исследуемого объекта не является удовлетворительной или есть необходимость исследования взаимодействия объекта с другими частями системы, которые

Замятина О.М. Компьютерное моделирование: учеб, пособие. Томск: Изд- во ТПУ, 2007.

еще не разработаны. Примерами квазинатурных моделей могут служить вычислительные полигоны, на которых отрабатывается программное обеспечение различных систем, или реальные автоматические системы управления, исследуемые совместно с математическими моделями соответствующих производств. Примером натурной модели может служить глобус как модель земного шара.

Пространственная модель имеет ту же физическую природу, что и оригинал, но отличается от него размерами. Примером могут разнообразные макеты (зданий, устройств и т.д.).

Аналоговая модель - физическая природа таких моделей отличается от природы объектов-оригиналов, но вместе с тем они описываются сходными математическими соотношениями, т.е. связь между моделью и объектом основывается на аналогии описания их поведения. В качестве аналоговых моделей применяют механические, гидравлические, пневматические, но наиболее широкое применение получили электрические и электронные аналоговые модели, в которых сила тока или напряжение является аналогами физических величин другой природы.

Интуитивные модели - модели, не поддающиеся формализации, основаны на принципе функционирования мыслительного процесса человека, на его опыте и приобретенных знаниях. Они подразделяются на мысленные модели и вербальные.

Мысленные модели - это модели, которые формируются в воображении человека в результате раздумий, умозаключений, иногда в виде некоторого образа. Это модель сопутствует сознательной деятельности человека.

Вербальные модели - модели, выраженные в разговорной форме; используются для передачи мыслей.

Вторая группа идеальных моделей - информационные модели, которые представляют собой специально отобранную и представленную в определенной форме информацию об объекте, отражающую наиболее существенные для исследователя свойства этого объекта. В идеальном (формализованном) моделировании моделями могут служить системы знаков или образов. Разнообразие представления таких моделей настолько велико, насколько развиты возможности каждого человека, его знания и способности.

Анализируя научную и учебную литературу, можно сделать вывод, что разделение информационных моделей на образные и знаковые достаточно условно. Многие авторы объединяют их в одну группу, которую называют образно-знаковой. Но мы дадим определения и представление каждой группы в отдельности. Так, в нашем понимании, к образным моделям можно отнести незначительную группу моделей, которые представляют собой зрительные образы объектов, зафиксированные на каком-либо носителе информации (бумаге, фото- и кинопленке, учебные плакаты и т.д.).

Знаковые модели - это уже более крупная подгруппа в группе информационных, которая объединяет все модели, представленные в виде системы знаков. Знаковые модели окружают нас повсюду.

Лингвистическая модель представляет собой некоторый объект, формализованной с помощью языковой системы, т.е. зафиксированный с помощью естественного языка. Например, правила дорожного движения, система философских понятий, система этических норм поведения, система государственного устройства и т.д.

Графическая, или визуальная, модель отображает в схематических образах моделируемый объект, отношения и связи моделируемой системы, в том числе в динамике развития. Примерами могут служить схематичный рисунок, чертеж, план, карта, граф, схема, диаграмма и т.д.

Специальные модели - это модели, как правило, отображающие поведение или свойства объекта, какой-либо процесс, описанный на специально разработанном языке. Например, компьютерные программы, химические формулы, ноты и т.д.

Табличные модели отображают связи внутри системы или с внешней средой, представленные в виде упорядоченных определенным образом значений, характеризующих эти связи в текущий момент времени или в динамике. В качестве примера можно привести табличное представление показателей экономической эффективности работы предприятия за ряд лет или таблицу химических элементов.

Важное место среди знаковых моделей отводится подгруппе математических моделей. Так как дальнейшее изучение изложенного материала будет связано непосредственно с этими моделями, то остановимся на их классификации более подробно.

Математическая модель - это результат процесса моделирования, когда исследуемые свойства объекта или процесса моделирования, взаимосвязи внутри него и с внешней средой описываются в виде совокупности математических формул, преобразуемых на основе правил логики и математики. Любую формулу, например формулу расчета рентабельности производства, можно назвать математической моделью. Математическое моделирование достаточно широко применяется в различных научных областях знаний. Математические модели, в свою очередь, подразделяются по ряду признаков (рис. 2.5).


Рис. 2.5.

В зависимости от характера отображаемых свойств объекта выделяют модели:

  • функциональные (отображают процессы функционирования объекта, например, протекающего технологического процесса);
  • структурные (отражают структурные свойства проектируемого объекта). Делятся, в свою очередь, на сетевые и иерархические. По способу получения функциональных зависимостей модели
  • теоретические (на основе изучения физических закономерностей, позволяют получать универсальные модели);
  • формальные (на основе выявленных свойств объекта по отношению к внешней среде без учета его строения и процессов, происходящих внутри него);
  • эмпирические (на основе замера параметров на входе и выходе функционирования объекта и их дальнейшая обработка).

По виду функциональных зависимостей: линейные; нелинейные.

По области определения независимых переменных:

  • непрерывные (значения непрерывны на определенном интервале измерения);
  • дискретные (значения дискретны на определенном интервале измерения с заданным шагом);
  • непрерывно-дискретные (значения на отдельных интервалах дискретны, а на отдельных непрерывны).

По форме представления свойств объекта:

  • алгоритмические (задается алгоритмом, описывающим функционирование и развитие объекта, например вычисление с определенной точностью или вычисление геометрической прогрессии);
  • аналитические (представляют собой явные математические зависимости выходных параметров от входных и имеют единственные решения при любых начальных условиях). Как разновидность выделяют численные модели, когда задаются конкретные начальные значения входных параметров, и вычисление выходных параметров на основе численных методов;
  • имитационные (расчет выходных параметров в зависимости от варьирования входных параметров для изучения путей развития).

По учету фактора времени выделяют динамические и статические модели.

По учету фактора неопределенности входных параметров и случайных помех:

  • детерминированные (неопределенности отсутствуют);
  • стохастические (присутствует вероятность наступления события, присваивания входному параметру определенного заранее неизвестного значения).

По области научных знаний модели могут быть физическими,

химическими, социологическими, экономическими и др.

По цели моделирования:

  • дескриптивные (описательные) модели (предназначены для описания и объяснения наблюдаемых фактов или прогноза поведения объектов, на которое нет возможности влиять);
  • оптимизационные однокритериальные модели (описывают процессы и связи, в которых можно влиять на один или несколько входных параметров с целью получения желаемого результата по заданному критерию отбора, например, варьировать дозы внесения удобрений с целью получения наибольшей урожайности);
  • оптимизационные многокритериальные модели (описывают процессы и связи, в которых можно влиять на один или несколько входных параметров с целью получения желаемого результата в соответствии с несколькими целями);
  • игровые модели (позволяют на основе математических зависимостей просчитывать варианты развития ситуации при неполной или неопределенной входной информации).

Одной из разновидностей математического моделирования выступает экономико-математическое. Применение математических методов существенно расширяет возможности экономического анализа, позволяет сформулировать новые постановки экономических задач, повышает качество принимаемых управленческих решений. Экономико-математические модели, отражая с помощью математических соотношений основные свойства экономических процессов и явлений, представляют собой эффективный инструмент исследования сложных экономических проблем. В современной научно-технической деятельности математические модели являются важнейшей формой моделирования, а в экономических исследованиях и практике планирования и управления - доминирующей формой. Математические модели экономических процессов и явлений называют экономико-математическими моделями.

Экономико-математические модели группируются в соответствии с общей классификацией математических моделей, приведенной ранее. Классификация ЭММ позволяет, с одной стороны, их упорядочить, систематизировать, а с другой - более детально разобраться в самой сущности моделирования экономических процессов.

Дополнительно ЭММ можно классифицировать по следующим признакам:

  • 1) по глубине временного горизонта модели подразделяются на долгосрочного прогнозирования, перспективные, среднесрочные и текущие;
  • 2) по проецированию результатов на будущие процессы следует разделять такие модели, как изыскательские и нормативные. Первые основаны на продолжении в будущем тенденций, взаимосвязей, сложившихся в прошлом и настоящем. Вторые определяют пути, ресурсы, сроки достижения в будущем возможных состояний объекта, отвечающих поставленным целям;
  • 3) по наличию обратных связей. По соотношению эндогенных (внутренних) и экзогенных (внешних) переменных модели могут разделяться на открытые и закрытые. Особое место занимают равновесные модели, широко используемые в рыночной экономике. Они дескриптивны, описательны;
  • 4) по степени структуризации. Модели делятся на однопродуктовые и многопродуктовые, на многоотраслевые и одноотраслевые, на одноэтапные и многоэтапные;
  • 5) по степени детализации делятся на агрегированные (макромодели) и детализированные (микромодули);
  • 6) по уровню исследуемых экономических процессов делятся на производственно-технологические и социально-экономические;
  • 7) по методу решения.

Знаете ли вы?

Первая работа, в которой применялись математические модели для исследования экономических процессов, - «Математические основы теории богатства» (1838) Огюста Курно. Однако нельзя сказать, что с этого момента математические методы стали быстро развиваться; в то время еще не было соответствующих объективных предпосылок. Хозяйство даже развитых стран было относительно несложным, характеризовалось небольшим количеством связей и простой структурой. Экономические отношения между отдельными экономическими субъектами можно было увидеть невооруженным глазом.

Опираясь на представленную классификацию экономико-математических моделей и поставленные цели моделирования, для разработки модели и последующего ее исследования подбирается соответствующий математический аппарат. В зависимости от выбранного экономико-математического метода модели также подвергаются классификации (рис. 2.6). Каждый из представленных методов может быть применен для решения различных по специфике задач.

Задачи сетевого планирования и управления рассматривают соотношения между сроками окончания одних работ и моментами начала других. Цель этих задач - нахождение слабых мест в планируемом комплексе работ и его оптимизация.

Задачи массового обслуживания посвящены изучению и анализу систем обслуживания с очередями заявок или требований и состоят в определении показателей эффективности работы систем, их оптимальных характеристик, например, в определении числа каналов обслуживания, времени обслуживания и т.п.

Задачи управления запасами состоят в отыскании оптимальных значений уровня запасов (точки заказа) и размера заказа. Особенность таких задач заключается в том, что с увеличением уровня запасов, с одной стороны, увеличиваются затраты на их хранение, но, с другой стороны, уменьшаются потери вследствие возможного дефицита запасаемого продукта .


Рис. 2.6.

Задачи распределения ресурсов позволяют спланировать производственный цикл при ограниченных наличных ресурсах.

Задачи ремонта и замены оборудования актуальны в связи с износом и старением оборудования и необходимостью его замены с течением времени. Задачи сводятся к определению оптимальных сроков, числа профилактических ремонтов и проверок, а также моментов замены устаревшего оборудования.

Задачи календарного планирования позволяют построить оптимальный план по очередности выполнения операций на различных видах оборудования.

Задачи планировки и размещения объектов могут применяться для определения наиболее удачного места размещения промежуточных складов для хранения продукции.

Задачи выбора маршрута, или сетевые задачи, обычно применяются для решения задач на транспорте и состоят в определении наиболее экономичных маршрутов.

И наоборот, одна и та же задача может решаться различными методами. Задачи, которые решаются с применением экономико-математических моделей, можно разделить на прогнозирование, стратегическое и календарное планирование, логистические расчеты, балансовые расчеты, анализ производства и результатов, управление запасами, управление предприятиями массового обслуживания, разрешение конфликтных ситуаций, подготовку производства, оценку инвестиционных решений, принятие управленческих решений.

Многие задачи оптимального планирования и подготовки производства в агропромышленном комплексе решаются на основе методов математического программирования (рис. 2.7). Наиболее изученным и широко применяемым из них в АПК является метод линейного программирования.

Линейное программирование (англ, linear programming) - это совокупность математических методов решения задач экстремального типа, характеризующихся линейной зависимостью между входными и выходными переменными.


Рис. 2.7.

Большинство разработанных экономико-математических моделей сельского хозяйства основаны на отыскании оптимальных параметров производства методом линейного программирования. В целом все задачи, решаемые методами линейного программирования, можно условно отнести к одной из следующих групп:

  • задачи оптимального производственного планирования;
  • задачи о смесях;
  • задачи о рюкзаке;
  • задачи о раскрое;
  • транспортная задача;
  • задача о назначениях;
  • задача замены оборудования;
  • задача загрузки мощностей.

Каждая из этих задач имеет свои разновидности и отличается от других видом искомых переменных, набором ограничений и методом решения. Многие экономико-математические модели, в которых требуется оптимизация параметров, например, балансовые или теории игр, могут сводиться к решению задачи линейного программирования (ЗЛП).

Знаете ли вы?

Одними из первых исследователей задач линейного программирования были Джон фон Нейман - математик и физик, доказавший основную теорему о матричных играх и изучивший экономическую модель, названную его именем, и Леонид Витальевич Канторович - советский академик, лауреат Нобелевской премии (1975), сформулировавший ряд задач линейного программирования и предложивший в 1939 г. метод их решения (метод разрешающих множителей). Кроме этого, наряду с Л.В. Канторовичем и фон Нейманом, одним из основоположников линейного программирования считается и американский математик Джордж Бернард Данциг. Хотя Данциг сделал свое открытие много позже, к своим находкам он пришел самостоятельно и назвал алгоритм решения задач линейного программирования симплекс-методом.

Из всех методов экономико-математического моделирования в сельском хозяйстве наибольшее распространение получили балансовые, математико-статистические и метод линейного программирования. Далее будет подробно рассмотрено практическое применение данных методов в исследовании производственных процессов в растениеводстве.

  • Стариков А.В., Кущева И.С. Экономико-математическое и компьютерноемоделирование: учеб, пособие. Воронеж, 2008.

Список вопросов

1. Основные понятия и определения.
(ИТО, моделирование, физическая модель, математическая модель, входные и выходные переменные)

2. Классификация математических моделей.

3. ВидыДУ, описывающих процессы в конструкциях РЭА

4. Основные требования, предъявляемые к математическим моделям ИТО.

5. Внешние и внутренние факторы ИТО.

6. Краевая задача (определение и пример).

7. Задача с начальными условиями (определение и пример).

8. Численные методы решения и их сравнение.

9. Метод конечных разностей

10. Основные положения метода конечных разностей

11. Процедура построения разностной схемы

12. Оценка погрешности дискретной модели непрерывного процесса

13. Постановка задач расчета теплового процесса на дискретной модели

14. Метод конечных элементов

15. Основные положения метода конечных элементов

16. Этапы решения в МКЭ.

17. Типы элементов, используемых в МКЭ.

18. Одномерный симплекс-элемент.

19. Двумерный симплекс-элемент.

20. Трёхмерный симплекс-элемент.

21. Функции формы.

22. Интерполяционные полиномы для дискретизированной области.

23. Матрица трансформации узла.

24. Решение краевых задач методом конечных элементов

25. Метод граничных элементов.

26. Типы граничных элементов.

Наш ответ ему

Основные понятия и определения (ИТО, моделирование, физическая модель, математическая модель, входные и выходные переменные)

Термин объект обозначает то, с чем взаимодействует человек (субъект) в своей познавательной, предметно-практической деятельности – компьютером, радаром, автомобилем. Термин техника означает совокупность средств человеческой деятельности, создаваемых как для осуществления процессов производства, так и для обслуживания непроизводственных потребностей общества.

Технический объект или техническая система – это любое изделие (элемент, устройство, подсистема, функциональная единица или система), которое можно рассматривать в отдельности.

Техническая система - это определенная совокупность упорядочение связанных между собой элементов, предназначенных для удовлетворения определенных потребностей, для выполнения определенных полезных функций. Как видим, понятие технический объект (ТО) – это более широкое понятие, поскольку технические системы являются лишь их разновидностью.



Термин «технический объект» предпочтительно использовать, когда речь о нем идет вообще, без всякой структурной, функциональной и конструктивной конкретизации, в то время как термин «техническая система» используется при обсуждении его внутреннего содержания, изучении, анализе, синтезе и конструировании.

Модель (ММ) – это условный образ исследуемого технического объекта (ИТО) , конструируемый исследователем так, чтобы отобразить его характеристики (свойства, взаимосвязи, параметры), существенные для исследователя.

Модель может быть физическим объектом (ФО) (макет, стенд) или спецификацией – функциональная, поведенческая, структурная и др.

Моделирование – метод исследования процессов или явлений в ИТО на моделях (физических или математических).

Математические модели могут быт геометрическими, топологическими, динамическими, логическими и др.

Информационные модели – таблицы и диаграммы вида «сущность-отношение»

Функциональная математическая модель – это алгоритм вычисления вектора выходных параметров Y при заданных векторах параметров элементов X и внешних параметров Q.

Физическая модель – устройство или приспособление, воспроизводящее в том или ином масштабе ИТО при сохранении физического подобия процессов в ФО процессам в ИТО.

Для оценки адекватности результатов исследования на ФМ реальному процессу вводится критерий подобия , содержащий комбинацию значений физических параметров, характеризующих ИТО.

Физическое моделирование – исследование процессов и явлений в ИТО с помощью ФМ при равенстве критерия подобия ФМ и ИТО.

Изоморфность ММ – одинаковое по форме математическое описание для разных по природе физических явлений.

Переменные в ММ – координаты пространства поведения ММ – это величины, подлежащие изменению или определению при решении задач ИТО.

Выходные переменные – величины, характеризующие состояние ИТО и подлежащие определению в процессе моделирования ИТО.

Входные переменные – величины, целенаправленно изменяемые самим исследователем (в соответствии с алгоритмом моделирования) при решении задач ИТО с помощью ММ.

Классификация математических моделей.

1. По характеру отображаемых свойств объекта математические модели делятся на структурные и функциональные модели.

Структурные ММ предназначены для отображения структурных геометрических или топологических свойств объекта.

В топологических ММ отображаются состав и взаимосвязи элементов объекта. Их применяют для описания объектов, состоящих из большого числа элементов, при решении задач привязки конструктивных элементов к определённым пространственным позициям или к относительным моментам времени. Могут иметь форму графов, таблиц, матриц, списков и т. п.

В геометрических ММотображаются геометрические свойства ТО, в которых дополнительно к сведениям о взаимном расположении элементов есть сведения о форме деталей, выражаемые либо совокупностью уравнений линий и поверхностей либо алгебрологическими формулами, описывающими области, составляющие тело объекта. Геометрические ММ также могут иметь форму графов и списков, отражающих конструкции из типовых конструктивных элементов.

Аналитические и алгебрологические модели используются для отображения геометрических свойств деталей со сравнительно несложными поверхностями. Аналитические модели – это уравнения поверхностей и линий. В алгебрологических моделях тела описываются системами логических выражений, отражающих условия принадлежности точек внутренним областям тел. В машиностроении для отображения геометрических свойств деталей со сложными поверхностями вместо них применяют каркасные и кинематические ММ.

Каркасные (сеточные) ММ представляют собой конечные множества точек или кривых, принадлежащих моделируемой поверхности. Каркас выбирается в виде линий, образующих сетку на описываемой поверхности. Кусочно-линейная аппроксимация на этой сетке устраняет главный недостаток аналитических моделей, так как в пределах каждого из участков, имеющих малые размеры, возможна удовлетворительная по точности аппроксимация поверхностями с простыми уравнениями. Коэффициенты этих уравнений рассчитываются исходя из условий плавности сопряжений участков.

Кинематическая математическая модель – набор законов и правил в виде математических формул описывающих движение тел или механизмов.

Функциональные ММ предназначены для отображения физических или информационных процессов, протекающих в объекте при его функционировании или изготовлении. Обычно функциональные ММ представляют собой системы уравнений, связывающих фазовые переменные, внутренние, внешние и выходные параметры.

2. Принадлежность к иерархическому уровню. Деление описаний объектов на иерархические уровни непосредственно касается математических моделей. Использование принципов блочно-иерархического подхода к проектированию приводит к появлению иерархии ММ проектируемых объектов. Количество иерархических уровней при моделировании определяется сложностью проектируемых объектов и возможностью средств проектирования. Математические модели делятся на модели, относящиеся к микро-, макро- и мета- уровням.

№ п/п Признак классификации Виды математических моделей
Характер отображаемых свойств объекта Структурные Топологические
Геометрические Аналитические
Алгебрологические
Каркасные (сеточные)
Кинематические
Функциональные
Принадлежность к иерархическому уровню Модели микроуровня
Модели макроуровня
Модели метауровня
Степень детализации Полные модели
Макромодели
Способ представления свойств объекта Инвариантные
Функциональные аналитические
Функциональные алгоритмические
Имитационные
Графические
Способ получения модели Теоретические
Эмпирические
По учету неизвестных факторов Детерминированные линейные
нелинейные
динамические
Стохастические (вероятностные)
С элементами неопределенности
По числу критериев эффективности Однокритериальные
Многокритериальные
Модели технического проектирования РТУ Модели физических процессов
Структурные
Статистические
Поведенческие
Логические модели, представленные правилами проектирования

Особенностью математических моделей на микроуровне является отражение физических процессов, протекающих в непрерывных пространстве и времени. Типичные модели на микроуровне – дифференциальные уравнения (ДУ) в частных производных. В них независимыми переменными являются пространственные координаты и время. Решая ДУ в частных производных, определяют поля механических напряжений, деформаций, давлений, температур и др. Попытки анализировать с их помощью процессы в многокомпонентных средах, сборочных единицах, электронных схемах не дают результатов из-за чрезмерного роста затрат машинного времени и памяти.

На макроуровне используют укрупнённую дискретизацию пространства по функциональному признаку, что приводит к представлению ММ на этом уровне в виде систем обыкновенных ДУ. В этих уравнениях независимой переменной является время, а вектор зависимых переменных составляют фазовые переменные, характеризующие состояние укрупнённых элементов дискретизированного пространства. Фазовыми переменными являются силы и скорости механических систем, давления и расходы гидравлических и пневматических систем и т. п. Системы обыкновенных ДУ являются универсальными моделями на макроуровне, однако, если порядок системы приближается к 10 3 , то работать с моделью становится затруднительным и переходят к представлениям ММ на метауровне.

На метауровне в качестве элементов моделирования принимают достаточно сложные совокупности деталей. Метауровень характеризуется большим разнообразием типов используемых ММ. Для многих объектов ММ на метауровне так же представляются системами обыкновенных ДУ, в которых фигурируют фазовые переменные, относящиеся только к взаимным связям элементов. Поэтому укрупнение элементов на метауровне означает получение ММ приемлемой размерности для гораздо более сложных объектов, чем на макроуровне.

Рассмотренные выше структурные модели также делятся на модели различных иерархических уровней, причем на низших иерархических уровнях преобладает использование геометрических моделей, на высших уровнях – используются топологические модели.

3. По степени детализации описания в пределах каждого иерархического уровня выделяют полные модели и макромодели.

В полной ММ фигурируют фазовые переменные, характеризующие состояния всех межэлементных связей.

В макромодели отображаются состояния значительно меньшего числа межэлементных связей, что соответствует описанию объекта при укрупнённом выделении элементов. Понятия «полная математическая модель » и «макромодель» относительны и отображают различную степень детальности описания свойств объекта.

4. По способу представления свойств объекта . В инвариантной форме математическая модель представляется системой уравнений вне связи с методом решения этих уравнений.

Функциональные аналитические ММ – это численные ММ, которые можно представить в виде явно выраженных зависимостей выходных параметров от параметров внутренних и внешних. Такие модели получают на основе физических законов, либо в результате прямого интегрирования исходных ДУ.

В функционально-алгоритмической форме соотношения в ММ связаны с выбранным численным методом решения и записаны в виде алгоритма - последовательности вычислений.

При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системы во времени и в пространстве, причем имитируются элементарные явления процесса с сохранением его логической и временной структуры.

Имитационное моделирование основано на прямом описании моделируемого объекта. Существенной характеристикой таких моделей является структурное подобие объекта и модели. Это значит, что каждому существенному с точки зрения решаемой задачи элементу объекта ставится в соответствие элемент модели. При построении имитационной модели описываются законы функционирования каждого элемента объекта и связи между ними. Ценным качеством имитации является возможность управлять масштабом времени.

Графические модели используются тогда, когда задачу удобно представить в виде графической структуры.

5. По способу получения. Теоретические ММ создаются в результате исследования процессов и их закономерностей, присущих рассматриваемому классу объектов и явлений. Для их получения используют неформальные и формальные методы. Эмпирические ММ создаются в результате изучения внешних проявлений свойств объекта с помощью измерений фазовых переменных на внешних входах и выходах обработки результатов измерений и обработки их результатов методами математической статистики.

Моделирование как метод разработки управленческого решения используется с середины XX века. Первые модели базировались на нормативных теориях и назывались нормативными. В них описывается стратегия поведения при выработке решения, ориентирующая на заданный критерий. Примером нормативных моделей являются:

Модели принятия статистических решений с использованием теории вероятности и математической статистики;

Инновационные игры как вариант нормативной модели поведения в условиях конфликта, наличия разноречивых мнений по проблемам нововведения;

Модели разработки решений на основе теории массового обслуживания, содержащие нормативные критерии при решении конкретных задач.

Однако нормативные модели не учитывают при принятии решений реального поведения человека, за которым остается выбор окончательного варианта. Этот "недостаток" в определенной мере компенсируют дескриптивные модели разработки решений, основанные на теории полезности, теории риска.

В настоящее время выделяется три основных подхода к построению моделей процесса разработки решений (математическому моделированию),основанных на:

1) теории статистических решений;

2) теории полезности;

3) теории игр.

Наиболее разработаны модели на основе теории статистических решений. В них считаются заданными:

Возможное распределение изучаемого случайного процесса;

Пространство возможных окончательных решений;

Стоимость вариантов решений;

Функция возможного убытка для каждого решения, соответствующего определенному состоянию внешней среды.

В общем виде можно констатировать, что решения принимаются, исходя из максимума прибыли или минимума потерь. В связи с этим вводится понятие риска, по величине которого судят о ценности решения. В этой теории рассматривается ряд возможных критериев оптимальности принимаемых решений. Так, решение, минимизирующее максимальный риск (байесовское решение), описывается как минимаксное решение. Статистическая теория решения применяется при выборе решений в условиях неопределенности внешней среды.

Второе направление математического моделирования связано с использованием теории полезности, основанной на индивидуальных предпочтениях, субъективной оценке вероятно-стей наступления событий внешней среды.

Третье направление моделей разработки решений основано на использовании теории игр. Данная теория применяется в условиях конфликтных ситуаций либо при принятии коллективных (совместных) решений. Основополагающим является выбор отправной точки (гарантирующего решения), с которой начинается совместная выработка лучшего решения. Основной принцип этой теории - минимакс. Схема теории игр описывает принципы принятия решений для широкого класса практических ситуаций инновационного характера. Игра возможна с любым числом участников и различной степенью их информированности. Формализации подвергаются лишь правила игры, а не поведение игроков.


Приведенные теории и подходы к моделированию процесса разработки решений отражают определенные его стороны:

статистическая теория решений - неопределенность среды, выбор, риск;

теория игр - некоторые характеристики поведения человека в условиях взаимодействия с другими людьми и со средой;

теория полезности - психологические представления о потребностях человека и его мотивации.

Разновидностью разработки решений являются эвристические модели. Впервые авторы Саймон и Ньюэл использовали термин "эвристический" (греческое "эурискеин" - делаю открытие) для характеристики особого подхода к решению задач и выбору решений. Основу эвристических моделей составляют логика и здравый смысл, основанные на имеющемся опыте. Такие модели используются в ситуациях, когда невозможно применение формальных аналитических методов. Сущность эвристических методов состоит в преобразовании одной сложной задачи в совокупность простых, поддающихся изучению математическими способами. Эвристическими моделями не решаются задачи оптимизации решений, но оценивается относительная пригодность конкретных стратегий с определенными ограничениями. На основе построения модели логических связей в ходе рассуждений ЛПР может решаться широкий класс задач.

Эвристические модели используются при выборе решений для разрешения ситуаций кратковременных и повторяющихся, а также сложных и повторяющихся без надежды на использование при этом математического аппарата.

Практическое применение эвристического подхода к моделированию процесса разработки и принятия управленческих решений предполагает наличие у ЛПР познавательных способностей и склонностей к обобщениям и выводам.

Принятие решений на психологическом уровне не является изолированным процессом. Оно включено в контекст реальной деятельности человека. При построении моделей принятия решений важно знать, как развертываются процессы, предшествующие ему и следующие за ним. Необходимо исследовать внешнюю и внутреннюю среду, включая поиск, выделение, классификацию и обобщение информации о среде, сформировать альтернативы и сделать выбор.

Существует большое разнообразие математических моделей, отражающих реальные процессы, протекающие в экономической жизни предприятия. Их можно классифицировать по разным признакам (рис. 11).

Следует отметить, что вопрос о классификации моделей в теории принятия решений продолжает оставаться спорным. Краткая характеристика и направление использования конкретных моделей сводятся к следующему.

В моделях могут отражаться интересы участников экономического процесса. Если они (интересы) одинаковы (хотя бы при нескольких действующих лицах), то модели называются моделями с одним участником: если интересы участников расходятся - то игровыми моделями. В рыночной экономике игровые модели имеют значительное распространение.

Если в моделях отсутствует фактор времени, рассматривается процесс в конкретный момент или на фиксированном отрезке.времени, то такие модели называются статическими. Область применения этих моделей ограничивается краткосрочным прогнозированием. (Пример - статическая модель межотраслевого баланса).


В динамических моделях появляется возможность отразить во времени процесс функционирования и развития объекта управления. Фактор времени присутствует в явном виде (на­пример, долгосрочное прогнозирование развития спроса с использованием метода экстраполяции - в этом случае сложившаяся тенденция развития явления в прошлом времени переносится на будущее).

В детерминированных моделях каждому значению фактора (набору исходных данных) строго соответствует единственное значение результата, то есть существует функциональная связь. Частным случаем этого класса моделей являются квазирегулярные модели. Это модели динамики средних, описывающие процесс на основе средневзвешенных значений параметров модели. Они достаточно широко применяются в социально-экономических исследованиях. Их особенность состоит в том, что каждому значению аргумента соответствует определенная величина функции, то есть посредством модели можно получить вполне определенный результат (например, зависимость объема спроса от величины покупательных фондов населения).

Стохастические модели характеризуются более полным отражением действительности, они ближе к реальным процессам, гдеотсутствует жесткая детерминация. Например, на одинаковом оборудовании может быть разная производительность труда. Данный класс моделей носит вероятностный характер, так как они подсказывают результат с некоторой уверенностью. В данном классе моделей выделяют две разновидности: вероят­ностные и статистические модели.

Вероятностные модели используют вероятностные значения параметров процесса. Однако математическая структура веро­ятностных моделей строго детерминирована. Для каждого на­бора исходных данных в моделях определяется единственное распределение вероятностей случайных событий в рассматри­ваемом процессе. Для реализации вероятностных моделей не­обходимо, чтобы каждому состоянию отдельного элемента сис­темы соответствовала вероятность его попадания в это состоя­ние.

Для отображения этой моделью динамики функционирова­ния предприятия необходимо разделить траекторию возможных состояний каждого элемента системы на определенное (дискретное) число состояний и определить вероятности перехода этого элемента из одного состояния в другое с учетом взаимного влияния элементов.

В статистических моделях каждому набору исходных данных соответствует в модели какой-либо случайный результат из множества возможных. Таким образом, каждое решение предлагает одну случайную реализацию результатов моделируемого

процесса.

Одним из эффективных приемов исследования экономических систем, используемых в процессе принятия управленческих решений, является динамическое моделирование. Оно представляет собой создание условной математической модели деятельности предприятия и ее эффективности, по которой про­слеживаются изменения, происходящие в управляемом объекте под влиянием мер, преднамеренно предпринимаемых в процессе управления, а также под реальным воздействием внутренней и внешней среды. Схема такова:

Технология динамического моделирования включает:

1) определение проблемы, которая должна быть решена в управляемой системе;

2) установление факторов, которые могут проявить себя при решении проблемы, то есть выявление причинно-следственных связей и их влияния на результаты работы предприятия;

3) определение количественного выражения этих связей. Математическая модель динамического моделирования представляет собой систему этих связей и их количественное выражение. Создание такой модели - сложная и трудоемкая работа. Представляется оправданным использование типовых моделей с последующим их приспособлением к нуждам конкретного предприятия.

Необходимость использования динамического моделирования вызвана следующими причинами:

1) суждения руководителей о решениях, последствиях, которые они могут вызвать, в значительной мере субъективны;

2) проведение экспериментов по принимаемым решениям, для их проверки, в экономическом и социальном плане сложная задача;

3) ряд обстоятельств, связанных с реализацией решений, трудно учесть логическим путем;

4) действие внешней среды трудно предвидеть;

5) положительный эффект на одном участке предприятия может отражаться негативно на других участках объекта управ-ления.

Особенность динамического моделирования состоит в том, что, какими бы ни были первоначальное состояние и первоначальное решение, все последующие решения должны исходить из состояния, полученного в результате предыдущего решения.

Где f i (x i) - прирост выпуска по г-му направлению при выделении x i ресурсов,

J i (x) - суммарный прирост выпуска по направлениям от первого до i -го при выделении х ресурсов.

Многошаговость отражает реальное протекание процесса принятия решения либо искусственное расчленение процесса принятия однократного решения на отдельные этапы и шаги.

Сетевое моделирование весьма эффективно на всех этапах разработки решений: в ходе поиска решений, выбора оптимального варианта и контроля за реализацией решений. Положительными признаками его являются детализация проблемы, конкретизация ответственности, улучшение оперативного руководства и контроля, рациональное использование ресурсов и времени (подробное изложение в главе 8).

В системе моделирования хозяйственных явлений часто используются матричные модели, в которых совмещаются математические средства с наглядным отображением взаимосвязи разделов плана (или отчета) предприятия. В матричной модели ресурсы (производственные мощности, трудовые, материальные ресурсы, технологические нормативы) выражаются в сочетании с объемами производства, затратами (трудовыми, финансовыми, материальными) за определенный период, степенью использования ресурсов по их видам.

Матричная модель эффективно используется для выявления взаимосвязей между различными сторонами деятельности предприятий, возникающих в результате выполнения какого-либо управленческого решения. По существу матричная модель представляет собой один из видов балансовых моделей.

После создания математической модели производят пробные расчеты (в том числе с помощью вычислительных машин) для проверки степени близости модели к реальной действительности. По результатам сравнения осуществляется корректирование: либо модели, если она не соответствует действительности, либо меняются взаимоотношения в организации и правила принятия управленческих решений, если модель выявила их несовершенство. Одной из разновидностей являются имитационные модели, рассчитанные на использование ЭВМ, которые рассматриваются в следующем параграфе.

КОНСПЕКТ ЛЕКЦИЙ

По курсу

«Математическое моделирование машин и транспортных систем»


В курсе рассмотрены вопросы, связанные с математическим моделированием, с формой и принципом представления математических моделей. Рассмотрены численные методы решения одномерных нелинейных систем. Освещаются вопросы компьютерного моделирования и вычислительного эксперимента. Рассмотрены методы обработки данных, полученных в результате научных или производственных экспериментов; исследования различных процессов, выявления закономерностей в поведении объектов, процессов и систем. Рассмотрены методы интерполирования и аппроксимации опытных данных. Рассмотрены вопросы, связанные с компьютерным моделированием и решением нелинейных динамических систем. В частности, рассмотрены методы численного интегрирования и решения обыкновенных дифференциальных уравнений первого, второго и более высоких порядков.


Лекция: Математическое моделирование. Форма и принципы представления математических моделей

В лекции рассмотрены общие вопросы математического моделирования. Приведена классификация математических моделей.

ЭВМ прочно вошла в нашу жизнь, и практически нет такой области человеческой деятельности, где не применялась бы ЭВМ. ЭВМ сейчас широко используется в процессе создания и исследования новых машин, новых технологических процессов и поиске их оптимальных вариантов; при решении экономических задач, при решении задач планирования и управления производством на различных уровнях. Создание же крупных объектов в ракетотехнике, авиастроении, судостроении, а также проектирование плотин, мостов, и др. вообще невозможно без применения ЭВМ.

Для использования ЭВМ при решении прикладных задач, прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель.

Слово "Модель" происходит от латинского modus (копия, образ, очертание). Моделирование - это замещение некоторого объекта А другим объектом Б. Замещаемый объект А называется оригиналом или объектом моделирования, а замещающий Б - моделью. Другими словами, модель - это объект-заменитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Целью моделирования являются получение, обработка, представление и использование информации об объектах, которые взаимодействуют между собой и внешней средой; а модель здесь выступает как средство познания свойств и закономерности поведения объекта.

Моделирование широко используются в различных сферах человеческой деятельности, особенно в сферах проектирования и управления, где особенными являются процессы принятия эффективных решений на основе получаемой информации.


Модель всегда строится с определенной целью, которая оказывает влияние на то, какие свойства объективного явления оказываются существенными, а какие - нет. Модель представляет собой как бы проекцию объективной реальности под определенным углом зрения. Иногда в зависимости от целей можно получить ряд проекций объективной реальности, вступающих в противоречие. Это характерно, как правило, для сложных систем, у которых каждая проекция выделяет существенное для определенной цели из множества несущественного.

Теорией моделирования является раздел науки, изучающий способы исследования свойств объектов-оригиналов, на основе замещения их другими объектами-моделями. В основе теории моделирования лежит теория подобия. При моделировании абсолютное подобие не имеет места и лишь стремится к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта. Абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же.

Все модели можно разделить на два класса:

1. вещественные,

2. идеальные.

В свою очередь вещественные модели можно разделить на:

1. натурные,

2. физические,

3. математические.

Идеальные модели можно разделить на:

1. наглядные,

2. знаковые,

3. математические.

Вещественные натурные модели - это реальные объекты, процессы и системы, над которыми выполняются эксперименты научные, технические и производственные.

Вещественные физические модели - это макеты, муляжи, воспроизводящие физические свойства оригиналов (кинематические, динамические, гидравлические, тепловые, электрические, световые модели).

Вещественные математические - это аналоговые, структурные, геометрические, графические, цифровые и кибернетические модели.

Идеальные наглядные модели - это схемы, карты, чертежи, графики, графы, аналоги, структурные и геометрические модели.

Идеальные знаковые модели - это символы, алфавит, языки программирования, упорядоченная запись, топологическая запись, сетевое представление.

Идеальные математические модели - это аналитические, функциональные, имитационные, комбинированные модели.

В приведенной классификации некоторые модели имеют двойное толкование (например - аналоговые). Все модели, кроме натурных, можно объединить в один класс мысленных моделей, т.к. они являются продуктом абстрактного мышления человека.

Остановимся на одном из наиболее универсальных видов моделирования - математическом, ставящим в соответствие моделируемому физическому процессу систему математических соотношений, решение которой позволяет получить ответ на вопрос о поведении объекта без создания физической модели, часто оказывающейся дорогостоящей и неэффективной.

Математическое моделирование - это средство изучения реального объекта, процесса или системы путем их замены математической моделью, более удобной для экспериментального исследования с помощью ЭВМ.

Математическая модель является приближенным представлением реальных объектов, процессов или систем, выраженным в математических терминах и сохраняющим существенные черты оригинала. Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи.

В общем случае математическая модель реального объекта, процесса или системы представляется в виде системы функционалов

Ф i (X,Y,Z,t)=0,

где X - вектор входных переменных, X= t ,

Y - вектор выходных переменных, Y= t ,

Z - вектор внешних воздействий, Z= t ,

t - координата времени.

Построение математической модели заключается в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат.

Обычно их оказывается настолько много, что ввести в модель всю их совокупность не удается. При построении математической модели перед исследованием возникает задача выявить и исключить из рассмотрения факторы, несущественно влияющие на конечный результат (математическая модель обычно включает значительно меньшее число факторов, чем в реальной действительности). На основе данных эксперимента выдвигаются гипотезы о связи между величинами, выражающими конечный результат, и факторами, введенными в математическую модель. Такая связь зачастую выражается системами дифференциальных уравнений в частных производных (например, в задачах механики твердого тела, жидкости и газа, теории фильтрации, теплопроводности, теории электростатического и электродинамического полей).

Конечной целью этого этапа является формулирование математической задачи, решение которой с необходимой точностью выражает результаты, интересующие специалиста.

Форма и принципы представления математической модели зависит от многих факторов.

По принципам построения математические модели разделяют на:

1. аналитические;

2. имитационные.

В аналитических моделях процессы функционирования реальных объектов, процессов или систем записываются в виде явных функциональных зависимостей.

Аналитическая модель разделяется на типы в зависимости от математической проблемы:

1. уравнения (алгебраические, трансцендентные, дифференциальные, интегральные),

2. аппроксимационные задачи (интерполяция, экстраполяция, численное интегрирование и дифференцирование),

3. задачи оптимизации,

4. стохастические проблемы.

Однако по мере усложнения объекта моделирования построение аналитической модели превращается в трудноразрешимую проблему. Тогда исследователь вынужден использовать имитационное моделирование.

В имитационном моделировании функционирование объектов, процессов или систем описывается набором алгоритмов. Алгоритмы имитируют реальные элементарные явления, составляющие процесс или систему с сохранением их логической структуры и последовательности протекания во времени. Имитационное моделирование позволяет по исходным данным получить сведения о состояниях процесса или системы в определенные моменты времени, однако прогнозирование поведения объектов, процессов или систем здесь затруднительно. Можно сказать, что имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями, имитирующими поведение реальных объектов, процессов или систем.

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

1. детерминированные,

2. стохастические.

В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра.

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

По виду входной информации модели разделяются на:

1. непрерывные,

2. дискретные.

Если информация и параметры являются непрерывными, а математические связи устойчивы, то модель - непрерывная. И наоборот, если информация и параметры - дискретны, а связи неустойчивы, то и математическая модель - дискретная.

По поведению моделей во времени они разделяются на:

1. статические,

2. динамические.

Статические модели описывают поведение объекта, процесса или системы в какой-либо момент времени. Динамические модели отражают поведение объекта, процесса или системы во времени.

По степени соответствия между математической моделью и реальным объектом, процессом или системой математические модели разделяют на:

1. изоморфные (одинаковые по форме),

2. гомоморфные (разные по форме).

Модель называется изоморфной, если между нею и реальным объектом, процессом или системой существует полное поэлементное соответствие. Гомоморфной - если существует соответствие лишь между наиболее значительными составными частями объекта и модели.

В дальнейшем для краткого определения вида математической модели в приведенной классификации будем пользоваться следующими обозначениями:

Первая буква:

Д - детерминированная,

С - стохастическая.

Вторая буква:

Н - непрерывная,

Д - дискретная.

Третья буква:

А - аналитическая,

И - имитационная.

1. Отсутствует (точнее не учитывается) влияние случайных процессов, т.е. модель детерминированная (Д).

2. Информация и параметры - непрерывные, т.е. модель - непрерывная (Н),

3. Функционирование модели кривошипно-шатунного механизма описано в виде нелинейных трансцендентных уравнений, т.е. модель - аналитическая (А)

2. Лекция: Особенности построения математических моделей

В лекции описан процесс построения математической модели. Приведен словесный алгоритм процесса.

Для использования ЭВМ при решении прикладных задач прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель.

Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи.

Для построения математической модели необходимо:

1. тщательно проанализировать реальный объект или процесс;

2. выделить его наиболее существенные черты и свойства;

3. определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;

4. описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций);

5. выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;

6. определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.

Математическое моделирование, кроме исследования объекта, процесса или системы и составления их математического описания, также включает:

1. построение алгоритма, моделирующего поведение объекта, процесса или системы;

2. проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;

3. корректировка модели;

4. использование модели.

Математическое описание исследуемых процессов и систем зависит от:

1. природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности, теории упругости и т.д.

2. требуемой достоверности и точности изучения и исследования реальных процессов и систем.

На этапе выбора математической модели устанавливаются: линейность и нелинейность объекта, процесса или системы, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса. При математическом моделировании сознательно отвлекаются от конкретной физической природы объектов, процессов или систем и, в основном, сосредотачиваются на изучении количественных зависимостей между величинами, описывающими эти процессы.

Математическая модель никогда не бывает полностью тождественна рассматриваемому объекту, процессу или системе. Основанная на упрощении, идеализации она является приближенным описанием объекта. Поэтому результаты, полученные при анализе модели, носят приближенный характер. Их точность определяется степенью адекватности (соответствия) модели и объекта.

Построение математической модели обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.

Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальный объект (поверхность стола) заменяется абстрактной математической моделью – прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола.

Однако модель прямоугольника для письменного стола – это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник. В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.

С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой. Для одного и того же стола мы можем принять либо модель прямоугольника, либо более сложную модель четырехугольника общего вида, либо четырехугольника с закругленными углами. Выбор той или иной модели определяется требованием точности. С повышением точности модель приходится усложнять, учитывая новые и новые особенности изучаемого объекта, процесса или системы.

Рассмотрим другой пример: исследование движения кривошипно-шатунного механизма (Рис. 2.1).

Рис. 2.1.

Для кинематического анализа этого механизма, прежде всего, необходимо построить его кинематическую модель. Для этого:

1. Заменяем механизм его кинематической схемой, где все звенья заменены жесткими связями;

2. Пользуясь этой схемой, мы выводим уравнение движения механизма;

3. Дифференцируя последнее, получаем уравнения скоростей и ускорения, которые представляют собой дифференциальные уравнения 1-го и 2-го порядка.

Запишем эти уравнения:

где С 0 – крайнее правое положение ползуна С:

r – радиус кривошипа AB;

l – длина шатуна BC;

– угол поворота кривошипа;

Полученные трансцендентные уравнения представляют математическую модель движения плоского аксиального кривошипно-шатунного механизма, основанную на следующих упрощающих предположениях:

1. нас не интересовали конструктивные формы и расположение масс, входящих в механизм тел, и все тела механизма мы заменили отрезками прямых. На самом деле, все звенья механизма имеют массу и довольно сложную форму. Например, шатун – это сложное сборное соединение, форма и размеры которого, конечно, будут влиять на движение механизма;

2. при построении математической модели движения рассматриваемого механизма мы также не учитывали упругость входящих в механизм тел, т.е. все звенья рассматривали как абстрактные абсолютно жесткие тела. В действительности же, все входящие в механизм тела – упругие тела. Они при движении механизма будут как-то деформироваться, в них могут даже возникнуть упругие колебания. Это все, конечно, также будет влиять на движение механизма;

3. мы не учитывали погрешность изготовления звеньев, зазоры в кинематических парах A, B, C и т.д.

Таким образом, важно еще раз подчеркнуть, что, чем выше требования к точности результатов решения задачи, тем больше необходимость учитывать при построении математической модели особенности изучаемого объекта, процесса или системы. Однако, здесь важно во время остановиться, так как сложная математическая модель может превратиться в трудно разрешимую задачу.

Наиболее просто строится модель, когда хорошо известны законы, определяющие поведение и свойства объекта, процесса или системы, и имеется большой практический опыт их применения.

Более сложная ситуация возникает тогда, когда наши знания об изучаемом объекте, процессе или системе недостаточны. В этом случае при построении математической модели приходится делать дополнительные предположения, которые носят характер гипотез, такая модель называется гипотетической. Выводы, полученные в результате исследования такой гипотетической модели, носят условный характер. Для проверки выводов необходимо сопоставить результаты исследования модели на ЭВМ с результатами натурного эксперимента. Таким образом, вопрос применимости некоторой математической модели к изучению рассматриваемого объекта, процесса или системы не является математическим вопросом и не может быть решен математическими методами.

Основным критерием истинности является эксперимент, практика в самом широком смысле этого слова.

Построение математической модели в прикладных задачах – один из наиболее сложных и ответственных этапов работы. Опыт показывает, что во многих случаях правильно выбрать модель – значит решить проблему более, чем наполовину. Трудность данного этапа состоит в том, что он требует соединения математических и специальных знаний. Поэтому очень важно, чтобы при решении прикладных задач математики обладали специальными знаниями об объекте, а их партнеры, специалисты, – определенной математической культурой, опытом исследования в своей области, знанием ЭВМ и программирования.

Лекция 3. Компьютерное моделирование и вычислительный эксперимент. Решение математических моделей

Компьютерное моделирование как новый метод научных исследований основывается на:

1. построении математических моделей для описания изучаемых процессов;

2. использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.

Суть компьютерного моделирования состоит в следующем: на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно изменяя его коэффициенты, начальные и граничные условия, исследовать, как при этом будет вести себя объект. Более того, можно спрогнозировать поведение объекта в различных условиях.

Вычислительный эксперимент позволяет заменить дорогостоящий натурный эксперимент расчетами на ЭВМ. Он позволяет в короткие сроки и без значительных материальных затрат осуществить исследование большого числа вариантов проектируемого объекта или процесса для различных режимов его эксплуатации, что значительно сокращает сроки разработки сложных систем и их внедрение в производство.

Компьютерное моделирование и вычислительный эксперимент как новый метод научного исследования заставляет совершенствовать математический аппарат, используемый при построении математических моделей, позволяет, используя математические методы, уточнять, усложнять математические модели. Наиболее перспективным для проведения вычислительного эксперимента является его использование для решения крупных научно-технических и социально-экономических проблем современности (проектирование реакторов для атомных электростанций, проектирование плотин и гидроэлектростанций, магнитогидродинамических преобразователей энергии, и в области экономики – составление сбалансированного плана для отрасли, региона, для страны и др.).

В некоторых процессах, где натурный эксперимент опасен для жизни и здоровья людей, вычислительный эксперимент является единственно возможным (термоядерный синтез, освоение космического пространства, проектирование и исследование химических и других производств).

Для проверки адекватности математической модели и реального объекта, процесса или системы результаты исследований на ЭВМ сравниваются с результатами эксперимента на опытном натурном образце. Результаты проверки используются для корректировки математической модели или решается вопрос о применимости построенной математической модели к проектированию либо исследованию заданных объектов, процессов или систем.

В заключение подчеркнем еще раз, что компьютерное моделирование и вычислительный эксперимент позволяют свести исследование "нематематического" объекта к решению математической задачи. Этим самым открывается возможность использования для его изучения хорошо разработанного математического аппарата в сочетании с мощной вычислительной техникой. На этом основано применение математики и ЭВМ для познания законов реального мира и их использования на практике.

В задачах проектирования или исследования поведения реальных объектов, процессов или систем математические модели, как правило, нелинейны, т.к. они должны отражать реальные физические нелинейные процессы, протекающие в них. При этом параметры (переменные) этих процессов связаны между собой физическими нелинейными законами. Поэтому в задачах проектирования или исследования поведения реальных объектов, процессов или систем чаще всего используются математические модели типа ДНА.

Согласно классификации приведенной в лекции 1:

Д – модель детерминированная, отсутствует (точнее не учитывается) влияние случайных процессов.

Н – модель непрерывная, информация и параметры непрерывны.

А – модель аналитическая, функционирование модели описывается в виде уравнений (линейных, нелинейных, систем уравнений, дифференциальных и интегральных уравнений).

Итак, мы построили математическую модель рассматриваемого объекта, процесса или системы, т.е. представили прикладную задачу как математическую. После этого наступает второй этап решения прикладной задачи – поиск или разработка метода решения сформулированной математической задачи. Метод должен быть удобным для его реализации на ЭВМ, обеспечивать необходимое качество решения.

Все методы решения математических задач можно разделить на 2 группы:

1. точные методы решения задач;

2. численные методы решения задач.

В точных методах решения математических задач ответ удается получить в виде формул.

Например, вычисление корней квадратного уравнения:

или, например, вычисление производных функций:

или вычисление определенного интеграла:

Однако, подставляя числа в формулу в виде конечных десятичных дробей, мы все равно получаем приближенные значения результата.

Для большинства задач, встречающихся на практике, точные методы решения или неизвестны, или дают очень громоздкие формулы. Однако, они не всегда являются необходимыми. Прикладную задачу можно считать практически решенной, если мы сумеем ее решить с нужной степенью точности.

Для решения таких задач разработаны численные методы, в которых решение сложных математических задач сводится к последовательному выполнению большого числа простых арифметических операций. Непосредственная разработка численных методов относится к вычислительной математике.

Примером численного метода является метод прямоугольников для приближенного интегрирования, не требующий вычисления первообразной для подынтегральной функции. Вместо интеграла вычисляется конечная квадратурная сумма:

x 1 =a – нижний предел интегрирования;

x n+1 =b – верхний предел интегрирования;

n – число отрезков, на которые разбит интервал интегрирования (a,b);

– длина элементарного отрезка;

f(x i) – значение подынтегральной функции на концах элементарных отрезков интегрирования.

Чем больше число отрезков n, на которые разбит интервал интегрирования, тем ближе приближенное решение к истинному, т.е. тем точнее результат.

Таким образом, в прикладных задачах и при применении точных методов решения, и при применении численных методов решения результаты вычислений носят приближенный характер. Важно только добиться того, чтобы ошибки укладывались в рамки требуемой точности.

Численные методы решения математических задач известны давно, еще до появления ЭВМ, но ими пользовались редко и только в сравнительно простых случаях в силу чрезвычайной трудоемкости вычислений. Широкое применение численных методов стало возможным благодаря ЭВМ.

В предложенной вашему вниманию статье мы предлагаем примеры математических моделей. Кроме этого, мы обратим внимание на этапы создания моделей и разберем некоторые задачи, связанные с математическим моделированием.

Еще один наш вопрос - это математические модели в экономике, примеры, определение которых мы рассмотрим немного позже. Начать наш разговор мы предлагаем с самого понятия «модель», кратко рассмотрим их классификацию и перейдем к основным нашим вопросам.

Понятие «модель»

Мы часто слышим слово «модель». Что же это такое? Данный термин имеет множество определений, вот только три из них:

  • специфический объект, который создается для получения и хранения информации, отражающий некоторые свойства или характеристики и так далее оригинала данного объекта (этот специфический объект может выражаться в разной форме: мысленный, описание при помощи знаков и так далее);
  • еще под моделью подразумевается отображение какой-либо конкретной ситуации, жизненной или управленческой;
  • моделью может служить уменьшенная копия какого-либо объекта (они создаются для более подробного изучения и анализа, так как модель отражает структуру и взаимосвязи).

Исходя из всего, что было сказано ранее, можно сделать небольшой вывод: модель позволяет подробно изучить сложную систему или объект.

Все модели можно классифицировать по ряду признаков:

  • по области использования (учебные, опытные, научно-технические, игровые, имитационные);
  • по динамике (статические и динамические);
  • по отрасли знаний (физические, химические, географические, исторические, социологические, экономические, математические);
  • по способу представления (материальные и информационные).

Информационные модели, в свою очередь, делятся на знаковые и вербальные. А знаковые - на компьютерные и некомпьютерные. Теперь перейдем к подробному рассмотрению примеров математической модели.

Математическая модель

Как не трудно догадаться, математическая модель отражает какие-либо черты объекта или явления при помощи специальных математических символов. Математика и нужна для того, чтобы моделировать закономерности окружающего мира на своем специфическом языке.

Метод математического моделирования зародился достаточно давно, тысячи лет назад, вместе с появлением данной науки. Однако толчок для развития данного способа моделирования дало появление ЭВМ (электронно-вычислительных машин).

Теперь перейдем к классификации. Ее так же можно провести по некоторым признакам. Они представлены в таблице ниже.

Мы предлагаем остановиться и подробнее рассмотреть последнюю классификацию, так как она отражает общие закономерности моделирования и цели создаваемых моделей.

Дескриптивные модели

В данной главе мы предлагаем остановиться подробнее на дескриптивных математических моделях. Для того чтобы было все предельно понятно, будет приведен пример.

Начнем с того, что этот вид можно назвать описательным. Это связано с тем, что мы просто делаем расчеты и прогнозы, но никак не можем повлиять на исход события.

Ярким примером описательной математической модели является вычисление траектории полета, скорости, расстояния от Земли кометы, которая вторглась в просторы нашей Солнечной системы. Эта модель является описательной, так как все полученные результаты могут только предупредить нас о какой-либо опасности. Повлиять на исход события, увы, мы не можем. Однако, основываясь на полученных расчетах, можно предпринять какие-либо меры для сохранения жизни на Земле.

Оптимизационные модели

Сейчас мы немного поговорим об экономико-математических моделях, примерами которых могут служить разные сложившиеся ситуации. В данном случае речь идет о моделях, которые помогают найти верный ответ в определенных условиях. Они обязательно имеют некие параметры. Чтобы стало предельно понятно, рассмотрим пример из аграрной части.

У нас есть зернохранилище, но зерно очень быстро портится. В этом случае нам необходимо правильно подобрать температурный режим и оптимизировать процесс хранения.

Таким образом, мы можем дать определение понятию «оптимизационная модель». В математическом смысле это система уравнений (как линейных, так и нет), решение которой помогает найти оптимальное решение в конкретной экономической ситуации. Пример математической модели (оптимизационной) мы рассмотрели, но хочется еще добавить: данный вид относится к классу экстремальных задач, они помогают описать функционирование экономической системы.

Отметим еще один нюанс: модели могут носить разный характер (см. таблицу ниже).

Многокритериальные модели

Сейчас предлагаем вам поговорить немного о математической модели многокритериальной оптимизации. До этого мы привели пример математической модели оптимизации процесса по какому-либо одному критерию, но что делать, если их много?

Ярким примером многокритериальной задачи служит организация правильного, полезного и одновременно экономного питания больших групп людей. С такими задачами часто встречаются в армии, школьных столовых, летних лагерях, больницах и так далее.

Какие критерии нам даны в данной задаче?

  1. Питание должно быть полезным.
  2. Расходы на пищу должны быть минимальными.

Как видите, эти цели совсем не совпадают. Значит, при решении задачи необходимо искать оптимальное решение, баланс между двумя критериями.

Игровые модели

Говоря об игровых моделях, необходимо понимать понятие «теория игр». Если говорить просто, то данные модели отражают математические модели настоящих конфликтов. Только стоит понимать, что, в отличие от реального конфликта, игровая математическая модель имеет свои определенные правила.

Сейчас будет приведен минимум информации из теории игр, которая поможет вам понять, что такое игровая модель. И так, в модели обязательно присутствуют стороны (две или более), которых принято называть игроками.

Все модели имеют некие характеристики.

Игровая модель может быть парной или множественной. Если у нас есть два субъекта, то конфликт парный, если больше - множественный. Также можно выделить антагонистическую игру, ее еще называют игрой с нулевой суммой. Это модель, в которой выигрыш одного из участников равняется проигрышу другого.

Имитационные модели

В данном разделе мы обратим внимание на имитационные математические модели. Примерами задач могут служить:

  • модель динамики численности микроорганизмов;
  • модель движения молекул, и так далее.

В данном случае мы говорим о моделях, которые максимально приближены к реальным процессам. По большому счету, они имитируют какое-либо проявление в природе. В первом случае, например, мы можем моделировать динамику численности муравьев в одной колонии. При этом можно наблюдать за судьбой каждой отдельной особи. В данном случае математическое описание используют редко, чаще присутствуют письменные условия:

  • через пять дней женская особь откладывает яйца;
  • через двадцать дней муравей погибает, и так далее.

Таким образом, используются для описания большой системы. Математическое заключение - это обработка полученных статистических данных.

Требования

Очень важно знать, что к данному виду модели предъявляют некоторые требования, среди которых - приведенные в таблице ниже.

Универсальность

Это свойство позволяет использовать одну и ту же модель при описании однотипных групп объектов. Важно отметить, что универсальные математические модели совершенно не зависят от физической природы исследуемого объекта

Адекватность

Здесь важно понимать, что данное свойство позволяет максимально правильно воспроизводить реальные процессы. В задачах эксплуатации очень важно данное свойство математического моделирования. Примером модели может служить процесс оптимизации использования газовой системы. В данном случае сопоставляются расчетные и фактические показатели, в результате проверяется правильность составленной модели

Точность

Данное требование подразумевает совпадение значений, которые мы получаем при расчете математической модели и входных параметров нашего реального объекта

Экономичность

Требование экономичности, предъявляемое к любой математической модели, характеризуется затратами на реализацию. Если работа с моделью осуществляется ручным способом, то необходимо рассчитать, сколько времени уйдет на решение одной задачи при помощи данной математической модели. Если речь идет об автоматизированном проектировании, то рассчитываются показатели затрат времени и памяти компьютера

Этапы моделирования

Всего в математическом моделировании принято выделять четыре этапа.

  1. Формулировка законов, связывающих части модели.
  2. Исследование математических задач.
  3. Выяснение совпадений практических и теоретических результатов.
  4. Анализ и модернизация модели.

Экономико-математическая модель

В этом разделе кратко осветим вопрос Примерами задач могут служить:

  • формирование производственной программы выпуска мясной продукции, обеспечивающей максимальную прибыль производства;
  • максимизация прибыли организации путем расчета оптимального количества выпуска столов и стульев на мебельной фабрике, и так далее.

Экономико-математическая модель отображает экономическую абстракцию, которая выражена при помощи математических терминов и знаков.

Компьютерная математическая модель

Примерами компьютерной математической модели являются:

  • задачи гидравлики при помощи блок-схем, диаграмм, таблиц, и так далее;
  • задачи на механику твердого тела, и так далее.

Компьютерная модель - это образ объекта или системы, представленный в виде:

  • таблицы;
  • блок-схемы;
  • диаграммы;
  • графика, и так далее.

При этом данная модель отражает структуру и взаимосвязи системы.

Построение экономико-математической модели

Мы уже ранее сказали о том, что такое экономико-математическая модель. Пример решения задачи будет рассмотрен прямо сейчас. Нам необходимо произвести анализ производственной программы для выявления резерва повышения прибыли при сдвиге в ассортименте.

Полностью рассматривать задачу мы не будем, а только построим экономико-математическую модель. Критерий нашей задачи - максимизация прибыли. Тогда функция имеет вид: Л=р1*х1+р2*х2…, стремящееся к максимуму. В данной модели р - это прибыль за единицу, х - это количество производимых единиц. Далее, основываясь на построенной модели, необходимо произвести расчеты и подвести итог.

Пример построения простой математической модели

Задача. Рыбак вернулся со следующим уловом:

  • 8 рыб - обитатели северных морей;
  • 20% улова - обитатели южных морей;
  • из местной реки не обнаружилось ни одной рыбы.

Сколько рыб он купил в магазине?

Итак, пример построения математической модели данной задачи выглядит следующим образом. Обозначаем общее количество рыб за х. Следуя условию, 0,2х - это количество рыб, обитающих в южных широтах. Теперь объединяем всю имеющуюся информацию и получаем математическую модель задачи: х=0,2х+8. Решаем уравнение и получаем ответ на главный вопрос: 10 рыб он купил в магазине.

Загрузка...