Польза натуральных продуктов. Витамины, макроэлементы

Три основных функциональных блока мозга (лурия а.р.). Ассоциативные области коры головного мозга. Физиологические отделы мозга Тоническая форма активации

Поскольку психические процессы человека являются сложными функциональными системами, не локализованы в узких, ограниченных участках мозга, а осуществляются при участии сложных комплексов совместно работающих мозговых аппаратов можно с полным основанием выделить три основных функциональных блока (или три основных аппарата) мозга, участие которых необходимо для осуществления любой психической деятельности.

С некоторым приближением к истине их можно обозначить как:
блок, обеспечивающий регуляцию тонуса или бодрствования («энергетический» блок)
блок получения, переработки и хранения информации , поступающей из внешнего мира
блок программирования, регуляции и контро ля психической деятельности

Психические процессы человека, в частности различные виды его сознательной деятельности, всегда протекают при участии всех трех блоков, каждый из которых играет свою роль в обеспечении психических процессов, вносит свой вклад в их осуществление.

БЛОК РЕГУЛЯЦИИ ТОНУСА И БОДРСТВОВАНИЯ

Для того чтобы обеспечить полноценные психические процессы, необходимо бодрственное состояние человека. Только в условиях оптимального бодрствования человек может :
наилучшим образом принимать и перерабатывать информацию
вызывать в памяти нужные избирательные системы связей
программировать деятельность
осуществлять контроль за деятельностью
корригировать ошибки
сохранять выбранную направленность деятельности

Хорошо известно, что в состоянии сна такая четкая регуляция психических процессов невозможна , ход всплывающих воспоминаний и ассоциаций приобретает неорганизованный характер и направленное выполнение психической деятельности становится недоступным.

Для осуществления каждой организованной деятельности необходимость возникновения такого оптимального состояния мозговой коры, когда нервные процессы характеризуются известной :
концентрированностью
уравновешенностью возбуждения и торможения
высокой подвижностью, позволяющей с легкостью переходить от одной деятельности к другой

Именно эти черты оптимальной нейродинамики исчезают в просоночном или сонном состоянии, при котором тонус коры снижается. Все это показывает, какую решающую роль играет сохранение оптимального тонуса коры для организованного протекания психической деятельности.

Возникает, однако, вопрос: какие аппараты мозга обеспечивают сохранение этого тонуса коры?

Был установлен тот факт, что аппараты, обеспечивающие и регулирующие тонус коры, находятся не в самой коре, а в лежащих ниже стволовых и подкорковых отделах мозга и что эти аппараты находятся в двойных отношениях с корой, тонизируя ее и испытывая ее регулирующее влияние.

В 1949 г. Г. Мэгун и Г. Моруцци обнаружили, что в стволовых отделах головного мозга находится особое нервное образование, по своему морфологическому строению и по своим функциональным свойствам приспособленное к тому, чтобы градуально (а не по принципу "все или ничего") регулировать состояние мозговой коры, изменяя ее тонус и обеспечивая ее бодрствование. Поскольку оно построено по типу нервной сети, в которую вкраплены тела нервных клеток, соединяющихся друг с другом короткими отростками, оно было названо ретикулярной формацией (reticulum - сеть). Она-то и модулирует состояние нервного аппарата.

Одни из волокон этой ретикулярной формации (РФ) направляются вверх , оканчиваясь в конечном итоге в новой коре. Это восходящая ретикулярная система, играющая решающую роль в активации коры и в регуляции ее активности.

Другие волокна идут в обратном направлении : начинаясь в новой и древней коре, направляются к расположенным ниже образованиям мозга. Это нисходящая ретикулярная система. Она ставит нижележащие образования под контроль тех программ, которые возникают в коре головного мозга и выполнение которых нуждается в модификации и модуляции состояний бодрствования.

Оба эти раздела РФ составляют единую систему , единый саморегулирующийся аппарат , который обеспечивает изменение тонуса коры, но вместе с тем сам находится под ее влиянием, изменяясь и модифицируясь под регулирующим влиянием происходящих в ней изменений.

Описание РФ явилось открытием первого функционального мозгового блока , обеспечивающего регуляцию тонуса коры и состояний бодрствования, позволяющего регулировать эти состояния соответственно поставленным перед человеком задачам .

Исследование его действия показало, что этот блок вызывает реакцию пробуждения (arousal), повышает возбудимость, обостряет чувствительность и оказывает тем самым общее активирующее влияние на кору головного мозга .

Поражение входящих в него структур приводит к резкому снижению тонуса коры, к появлению состояния сна, а иногда и к коматозному состоянию.

Вместе с тем было обнаружено, что раздражение других ядер РФ (тормозящих) вело к возникновению характерных для сна изменений в электрической активности коры и к развитию сна.

Активизирующая РФ, являющаяся важнейшей частью первого функционального блока мозга, в некотором роде, является специфической. Как показали наблюдения, РФ имеет определенные черты дифференцированности или "специфичности" как по своим анатомическим характеристикам, так и по своим источникам и по формам проявления. Только эта дифференцированность ("специфичность") не имеет ничего общего с "модальностью" основных органов чувств (или анализаторов) и носит, как показал ряд авторов своеобразный характер.

Расмотрим дифференцированность источников активации, составляющей основную функцию РФ, и дифференцированность ее топографической организации.

Нервная система всегда находится в состоянии некоторого тонуса активности и сохранение его связано со всякой жизнедеятельностью. Однако существуют ситуации, в которых обычный тонус недостаточен и должен быть повышен. Эти ситуации и являются основными источниками активации нервной системы.

Можно выделить по крайней мере три основных источника этой активации , причем действие каждого из них передается при посредстве активирующей РФ и, что существенно, при помощи ее различных частей.

!!! В этом и состоит дифференцированность или специфичность функциональной организации этой "неспецифической" активирующей системы.

1. Первый источник - обменные процессы организма , или, как иногда выражаются, его "внутреннее хозяйство". Эти процессы, приводящие к сохранению внутреннего равновесия организма (гомеостазиса).

Более простые формы этого вида активации связаны с дыхательными, пищеварительными процессами, с сахарным и белковым обменом, с внутренней секрецией и т.д . Все они регулируются главным образом аппаратами гипоталамуса. Тесно связанная с гипоталамусом РФ продолговатого и среднего мозга также играет значительную роль в этой наиболее простой ("витальной") форме активации.

Более сложные формы этого вида активации связаны с обменными процессами, организованными в определенные врожденные системы поведения (системы инстинктивного, или безусловно-рефлекторного, пищевого и полового поведения) . Эти формы активации обеспечиваются более высокорасположенными ядрами мезэнцефальной, диэнцефальной и лимбической РФ.

Общим для обоих этих видов активации является то, что их источник - этo обменные (и гуморальные) процессы, протекающие в организме.

Различия же их заключаются в неодинаковом по сложности уровне организации и в том факте, что:
если первые процессы , наиболее элементарные, вызывают лишь примитивные автоматические реакции, связанные с недостатком кислорода или выделением запасных веществ из их органических депо и при голодании
то вторые организованы в сложные поведенческие системы, в результате действия которых удовлетворяются соответствующие потребности и восстанавливается равновесие "внутреннего хозяйства организма"

2. Второй источник активации - связан с поступлением в организм раздражителей из внешнего мира и приводит к возникновению совершенно иных форм активации, проявляющихся в виде ориентировочного рефлекса.

Человек живет в мире постоянно доходящей до него информации, и потребность в этой информации иногда оказывается у него не меньшей, чем потребность в органическом обмене веществ. Лишенный постоянного притока информации, что имеет место в редких случаях выключения всех воспринимающих органов, он впадает в сон, из которого его может вывести только постоянно поступающая информация . Нормальный человек переносит ограничение в контакте с внешним миром очень тяжело.

Однако эта тоническая форма активации, связанная с работой органов чувств, является лишь наиболее элементарным источником активации описываемого типа . Поскольку человек живет в условиях постоянно меняющейся среды, эти изменения - иногда неожиданные для него - требуют известного обостренного состояния бодрствования.

Такое обостренное бодрствование должно сопровождать всякое изменение в окружающих условиях, всякое появление неожиданного (а иногда и ожидаемого) изменения условий. Оно должно проявляться в мобилизации организма к возможным неожиданностям, и именно это лежит в основе особого вида активности - ориентировочного рефлекса и который, не будучи обязательно связанным с основными биологическими формами инстинктивных процессов (пищевым, половым и т.д.), является важнейшей основой познавательной деятельности.

Ориентировочный рефлекс, или реакции пробуждения (активации), связаны с работой РФ мозга.

Как показали исследования, ориентировочный рефлекс и реакция активации представляют собой сложное, комплексное явление. Описаны тоническая и генерализованная формы этой реакции, с одной стороны, и фазическая и локальная ее формы - с другой.

Тоническая и генерализованная формы связаны с нижними отделами ствола головного мозга

Фазическая и локальная формы связаны с верхними отделами ствола , и прежде всего с неспецифической таламической системой.

Неспецифические ядра таламуса, а также хвостатого тела и гиппокампа функционально тесно связаны с системой ориентировочного рефлекса.

Второй источник активации тесно связан с механизмами памяти:

Каждая реакция на новизну требует, прежде всего, сличения нового раздражителя с системой старых, уже ранее появлявшихся раздражителей -"компарация"

"компарация" позволяет установить, является ли данный раздражитель действительно новым и должен ли он вызывать ориентировочный рефлекс, или же он является старым и появление его не требует специальной мобилизации организма

Такой механизм обеспечивает процесс "привыкания", когда многократно повторяющийся раздражитель теряет свою новизну и необходимость специальной мобилизации организма при его появлении исчезает

Значительная часть нейронов гиппокампа и хвостатого тела, не имеющих модально-специфических функций, осуществляет функцию "компарации" сигналов, реагируя на появление новых раздражителей и выключая активность в условиях привыкания к ним.

Активирующая и тормозящая (иначе говоря, модулирующая) функции нейронов гиппокампа и хвостатого тела оказались, как стало ясно в последние годы, важнейшим источником регуляции тонических состояний мозговой коры, которые связаны с наиболее сложными видами ориентировочного рефлекса, на этот раз носящими уже не врожденный, а более сложный, прижизненно возникающий или условно рефлекторный характер.

3. Третий источник активации человека - планы, перспективы и программы , которые формируются в процессе сознательной жизни людей.

Они социальны по своему происхождению и осуществляются при ближайшем участии сначала внешней, а потом и внутренней речи:
всякий сформулированный в речи замысел вызывает целую программу действий, направленных к достижению этой цели
всякое достижение ее прекращает активность, в то время как обратное ведет к дальнейшей мобилизации усилий

Было бы неправильно считать возникновение таких намерений и формулировку целей чисто интеллектуальным актом. Осуществление замысла, достижение цели требуют известной энергии и могут быть обеспечены лишь при наличии достаточного уровня активности.

Мозговой аппарат, лежащий в основе этой активности (наиболее существенной для понимания сознательного поведения человека), оставался долгое время неизвестным, и только в последние годы был сделан существенный шаг к его выявлению.

В поисках механизмов этих наиболее высоких форм организации активности следует сохранить вертикальный принцип строения функциональных систем мозга, т.е. обратиться к тем связям, которые существуют между высшими отделами коры и нижележащей РФ.

Выяснено, что посредством кортикоретикулярных путей раздражение отдельных участков коры может вызывать:
генерализованную реакцию пробуждения
оказывать облегчающее влияние на специальные рефлексы
изменять возбудимость мышц
понижать пороги различительной чувствительности
обусловливать ряд других изменений

Таким образом, с достаточной надежностью установлено:

Наряду со специфическими сенсорными и двигательными функциями, кора головного мозга осуществляет и неспецифические активирующие функции

Каждое специфическое афферентное или эфферентное волокно сопровождается волокном неспецифической активирующей системы и что раздражением определенных участков коры можно вызвать как активирующие, так и тормозящие влияния на нижележащие нервные образования

Нисходящие волокна активирующей (и тормозящей) РФ имеют достаточно дифференцированную корковую организацию, и если наиболее специфические пучки этих волокон (повышающих или понижающих тонус сенсорных или двигательных аппаратов) исходят из первичных (и частично вторичных) зон коры, то более общие активирующие влияния на РФ ствола исходят прежде всего из лобных отделов коры

Нисходящие волокна, идущие от префронтальной коры к ядрам зрительного бугра и нижележащих стволовых образований - являются тем аппаратом, посредством которого высшие отделы мозговой коры (непосредственно участвующие в формировании намерений и планов) вовлекают в это и нижележащие аппараты РФ таламуса и ствола, тем самым модулируя их работу и обеспечивая наиболее сложные формы сознательной деятельности

Все это показывает, что аппараты первого функционального блока не только тонизируют кору, но и сами испытывают ее дифференцирующее влияние и что первый функциональный блок мозга работает в тесной связи с высшими отделами коры.
_______________________________________________________________________________________________

БЛОК ПРИЕМА, ПЕРЕРАБОТКИ И ХРАНЕНИЯ ИНФОРМАЦИИ

Этот блок расположен в конвекситальных (наружных) отделах новой коры (неокортекса) и занимает ее задние отделы, включая в свой состав аппараты:
зрительной (затылочной) области
слуховой (височной) области
общечувствительной (теменной) области

По своему гистологическому строению он состоит не из сплошной нервной сети, а из изолированных нейронов, которые составляют толщу мозговой коры располагаясь в шести слоях.

В отличие от аппаратов первого блока работают не по принципу градуальных изменений, а по закону "все или ничего ", принимая отдельные импульсы и передавая их на другие группы нейронов.

По своим функциональным особенностям аппараты этого блока приспособлены к приему раздражителей, доходящих до головного мозга от периферических рецепторов, к дроблению их на огромное число составляющих элементов (анализу на мельчайшие составляющие детали) и к их комбинации в нужные динамические функциональные структуры (к образованию целых функциональных систем).

Этот блок состоит из частей, обладающих высокой модальной специфичностью. Входящие в его состав части приспособлены к тому, чтобы принимать информацию:
зрительную
слуховую
вестибулярную
общечувствительную

В этот блок включаются также центральные аппараты вкусовой и обонятельной рецепции , хотя у человека они настолько оттесняются центральным представительством высших экстероцептивных, дистантных анализаторов, что занимают в пределах коры головного мозга очень незначительное место.

Основу этого блока образуют первичные или проекционные зоны коры , состоящие главным образом из нейронов 4-го афферентного слоя, значительная часть которых обладает высочайшей специфичностью.

Естественно, что такие высочайшие по своей дифференцированнее нейроны сохраняют строгую модальную специфичность , и в первичной затылочной коре нельзя найти клеток, которые реагировали бы на звук, так же как и в первичной височной коре мы не обнаружили клеток, которые реагировали бы на зрительные раздражители.

Следует, однако, отметить, что первичные зоны отдельных областей коры, входящих в состав этого блока, включают в свой состав:
клетки мультимодального характера, реагирующие на несколько видов раздражителей
клетки, не реагирующие на какой-либо модально-специфический тип раздражителей и, по-видимому, сохраняющие свойства неспецифического поддержания тонуса

Однако эти клетки составляют лишь очень небольшую часть всего нейронного состава первичных зон коры (по некоторым данным - не превышают 4% общего состава всех клеток).

Первичные, или проекционные, зоны коры названного блока мозга составляют основу его работы. Они окружены надстроенными над ними аппаратами вторичных (или гностических) зон коры , в которых 4-й афферентный слой уступает ведущее место 2-му и 3-му слоям клеток, не имеющим столь выраженной модальной специфичности. Эти слои в значительно большей степени включают в свой состав ассоциативные нейроны с короткими аксонами, позволяющие комбинировать поступающие возбуждения в те или иные функциональные узоры и осуществляющие, таким образом, синтетическую функцию.

Подобное иерархическое строение в одинаковой степени свойственно всем областям коры, включенным во второй блок мозга.

Таким образом, основные, модально-специфические зоны второго блока мозга построены по единому принципу иерархической организации, который одинаково сохраняется во всех этих зонах. Каждая из них должна рассматриваться как центральный, корковый аппарат того или иного модально-специфического анализатора. Все они приспособлены для того, чтобы служить аппаратом приема, переработки и хранения поступающей из внешнего мира информации, или, иначе говоря, мозговыми механизмами модально-специфических форм познавательных процессов.

Однако познавательная деятельность человека никогда не протекает, опираясь лишь на одну изолированную модальность (зрение, слух, осязание). Любое предметное восприятие - и тем более представление - системно, оно является результатом полимодальной деятельности , которая носит сначала развернутый, а затем свернутый характер. Поэтому совершенно естественно, что она должна опираться на совместную работу целой системы зон коры головного мозга.

Функцию обеспечения такой совместной работы целой группы анализаторов несут третичные зоны второго блока : зоны перекрытия корковых отделов различных анализаторов, расположенные на границе затылочной, височной и задне-центральной коры - образования нижнетеменной области, которая у человека развилась настолько, что составляет едва ли не четвертую часть всех образований описываемого блока.

Эти третичные зоны задних отделов мозга состоят преимущественно из клеток 2-го и 3-го (ассоциативных) слоев коры и, следовательно, почти нацело осуществляют функцию интеграции возбуждений, приходящих из разных анализаторов.

Есть основания думать, что подавляющее большинство нейронов этих зон имеют мультимодальный характер и, по некоторым данным, реагируют на такие обобщенные признаки, на которые не могут реагировать нейроны первичных и даже вторичных зон коры.

!!! На основании анализа психологических экспериментов и клинических данных показано, что основная роль этих зон связана:

с пространственной организацией притекающих в различные сферы возбуждений

в превращении последовательно поступающих (сукцессивных ) сигналов в одновременно обозримые (симультанные ) группы

Такая работа третичных зон задних отделов коры необходима не только для успешного синтеза доходящей до человека наглядной информации , но и для перехода от непосредственных, наглядных синтезов к уровню символических процессов - для операций значениями слов, сложными грамматическими и логическими структурами, системами чисел и отвлеченных соотношений.

Именно в силу этого третичные зоны задних отделов коры являются аппаратами, участие которых необходимо для превращения наглядного восприятия в отвлеченное мышление , всегда протекающее в известных внутренних схемах, и для сохранения в памяти материала организованного опыта, иначе говоря - не только для получения и кодирования (переработки), но и для хранения полученной информации .

Все это и дает основание обозначить весь этот функциональный блок мозга как блок получения, переработки и хранения информации.

Можно выделить три основных закона, по которым построена работа отдельных частей коры, входящих в состав этого мозгового блока.

Первый закон закон иерархического строения входящих в состав этого блока корковых зон . Соотношение первичных, вторичных и третичных зон коры, осуществляющих все более сложные синтезы доходящей до человека информации, является иллюстрацией этого закона. Следует, однако, отметить, что отношения этих зон коры не остаются одинаковыми, а изменяются в процессе онтогенетического развития.

Второй закон - закон убывающей специфичности иерархически построенных зон коры, входящих в его состав :
Первичные зоны обладают максимальной модальной специфичностью
Вторичные зоны коры обладают модальной специфичностью в значительно меньшей степени. Сохраняя свое непосредственное отношение к корковым отделам соответствующих анализаторов, эти зоны сохраняют свои модально-специфические гностические функции, интегрируя в одних случаях зрительную, в других случаях – слуховую, в третьих случаях - тактильную информацию.
Третичные зоны описываемого блока в еще меньше степени обладают модальной специфичностью; эти зоны обозначаются как зоны перекрытия корковых отделов различных анализаторов; эти зоны осуществляют симультанные (пространственные) синтезы, что делает практически почти невозможным говорить о том, какой модально-специфический (зрительный или тактильный) характер они имеют.

Третий (основной) закон - закон прогрессивной латерализации функций , вступающих в действие по мере перехода от первичных зон мозговой коры к вторичным и затем третичным зонам.
Известно, что первичные зоны обоих полушарий мозговой коры, построенных по принципу соматотопической проекции, равноценны. Каждая из них является проекцией контрлатеральных (расположенных на противоположной стороне) воспринимающих поверхностей, и ни о каком доминировании первичных зон какого-либо одного из полушарий говорить нельзя.

Иначе обстоит дело при переходе к вторичным, а затем и третичным зонам, где возникает известная латерализация функций, не имеющая места у животных, но характерная для функциональной организации человеческого мозга.

Левое полушарие (у правшей) становится доминантным. Именно оно начинает осуществлять речевые функции, в то время как правое полушарие, не связанное с деятельностью правой руки и речью, остается субдоминантным.
_______________________________________________________________________________________________

БЛОК ПРОГРАММИРОВАНИЯ, РЕГУЛЯЦИИ И КОНТРОЛЯ ДЕЯТЕЛЬНОСТИ

Третьим функциональным блоком мозга (блоком программирования, регуляции и контроля) обеспечивается организация активной, сознательной, целенаправленной деятельности .

Человек не только пассивно реагирует на доходящие до него сигналы. Он:
создает замыслы
формирует планы и программы своих действий
следит за их выполнением
регулирует свое поведение, приводя его в соответствие с планами и программами
контролирует свою сознательную деятельность, сличая эффект действий с исходными намерениями и корригируя допущенные ошибки

Этим задачам и служат аппараты третьего блока головного мозга , расположенные в передних отделах больших полушарий - впереди от передней центральной извилины. Выходными воротами этого блока служит двигательная зона коры (4-е поле Бродмана), 5-й слой которой содержит гигантские пирамидные клетки Беца. Волокна от них идут к двигательным ядрам спинного мозга, а оттуда к мышцам, составляя части большого пирамидного пути.

Проекционная двигательная кора не может, однако, функционировать изолированно. Все движения человека в той или иной степени нуждаются в известном тоническом фоне , который обеспечивается базальными двигательными узлами и волокнами экстрапирамидной системы.

Первичная (проекционная) двигательная кора является , как уже сказано, выходными воротами двигательных импульсов ("передними рогами головного мозга" , как назвал их Н.А. Бернштейн).

Естественно, что двигательный состав импульсов, посылаемых на периферию, должен быть хорошо подготовлен, включен в известные программы, и только после такой подготовки импульсы, направленные через переднюю центральную извилину, могут обеспечить нужные целесообразные движения . Такая подготовка двигательных импульсов не может быть выполнена самими пирамидными клетками. Она должна быть обеспечена:
как в аппарате передней центральной извилины
так и в аппаратах надстроенных над ней вторичных зон двигательной коры ,
которые готовят двигательные программы, лишь затем передающиеся на гигантские пирамидные клетки.

В пределах самой передней центральной извилины таким аппаратом, участвующим в подготовке двигательных программ для передачи их на гигантские пирамидные клетки, являются верхние слои коры и внеклеточное серое вещество, составленное из элементов дендритов и глии . Отношение массы этого внеклеточного серого вещества к массе клеток передней центральной извилины резко возрастает по мере эволюции..., так что величина его у человека вдвое больше, чем у высших, и почти в пять раз больше, чем у низших обезьян. Это означает, что по мере перехода к высшим ступеням эволюционной лестницы и особенно по мере перехода к человеку двигательные импульсы, генерируемые гигантскими пирамидными клетками Беца, должны становиться все более управляемыми, и именно эта управляемость обеспечивается мощно возрастающими аппаратами внеклеточного серого вещества, состоящего из дендритов и глии.

Передняя центральная извилина является, однако, лишь проекционной зоной, исполнительным аппаратом мозговой коры. Решающее значение в подготовке двигательных импульсов имеют надстроенные над ней вторичные и третичные зоны , так же подчиняющиеся принципам иерархического строения и убывающей специфичности, как и организация блока приема, переработки и хранения информации.

Но ее основные отличия от второго (афферентного) блока заключается в том, что:

Процессы здесь идут в нисходящем направлении, начинаясь с наиболее высоких - третичных и вторичных зон, где формируются двигательные планы и программы, и лишь затем переходя к аппаратам первичной двигательной зоны, которая посылает подготовленные двигательные импульсы на периферию

Этот блок сам не содержит набора модально-специфических зон, представляющих отдельные анализаторы, а состоит целиком из аппаратов эфферентного (двигательного) типа и сам находится под постоянным влиянием аппаратов афферентного блока

Роль основной зоны блока играют премоторные отделы лобной области. Раздражение этих отделов коры вызывает не соматотопически ограниченные вздрагивания отдельных мышц, а целые комплексы движений , имеющих системно организованный характер (повороты глаз, головы и всего тела, хватательные движения рук), что уже само по себе указывает на интегративную роль этих зон коры в организации движений.

Следует отметить также, что если раздражение передней центральной извилины вызывает ограниченное возбуждение, распространяющееся лишь на близлежащие точки, то раздражение премоторных отделов коры распространяется на достаточно отдаленные участки, включающие и постцентральные зоны, и, наоборот, сами участки премоторных зон возбуждаются под влиянием раздражения далеко расположенных от них участков афферентных отделов коры.

Все эти факты дают полное основание отнести премоторные зоны к вторичным отделам коры и высказать предположение, что они осуществляют в отношении движений такую же организующую функцию, какую выполняют вторичные зоны задних отделов коры, превращающие соматотопическую проекцию в функциональную организацию.

Наиболее существенной частью третьего функционального блока мозга являются, однако, лобные доли, или, если выражаться точнее, префронтальные отделы мозга . Именно эти разделы мозга, относясь к третичным зонам коры , играют решающую роль в:
формировании намерений и программ
регуляции и контроле наиболее сложных форм поведения человека

Особенностью данной области мозга является ее богатейшая система связей как с нижележащими отделами мозга (медиальными ядрами, подушкой зрительного бугра и другими образованиями) и соответствующими отделами РФ, так и со всеми остальными отделами коры.

Эти связи носят двусторонний характер и делают префронтальные отделы коры образованиями, находящимися в особенно выгодном положении как для приема и синтеза сложнейшей системы афферентаций, идущих от всех отделов мозга, так и для организации эфферентных импульсов, позволяющих оказывать регулирующие воздействия на все эти структуры.

Решающее значение имеет тот факт, что лобные доли мозга, и в частности их медиальные и базальные отделы:
обладают особенно мощными пучками восходящих и нисходящих связей с РФ и получают мощные импульсы от систем первого функционального блока, "заряжаясь" от него соответствующим энергетическим тонусом
вместе с тем они могут оказывать особенно мощное модулирующее влияние на РФ , придавая ее активирующим импульсам известный дифференцированный характер и приводя их в соответствие с динамическими схемами поведения, которые непосредственно формируются в лобной коре мозга

Было установлено, что префронтальные отделы коры действительно играют существенную роль в регуляции состояния активности , меняя его в соответствии с наиболее сложными, формулируемыми с помощью речи намерениями и замыслами человека.

Следует отметить, что эти отделы мозговой коры созревают лишь на очень поздних этапах онтогенеза и становятся окончательно подготовленными к действию лишь у ребенка 4-7-летнего возраста. Темп роста площади лобных областей мозга резко повышается к 3,5-4 годам и испытывает затем второй скачок к 7-8-летнему возрасту. К первому из этих периодов относится и существенный скачок роста клеточных тел, входящих в состав префронтальных отделов коры.В филогенезе эти отделы мозга получают мощное развитие лишь на самых поздних этапах эволюции. У человека они занимают до 1/3 всей массы мозга и имеют помимо указанных и другие функции, более непосредственно связанные с организацией активной деятельности людей.

Эти отделы двусторонне связаны не только с нижележащими образованиями ствола и промежуточного мозга, но и со всеми остальными отделами коры больших полушарий. Отмечены богатейшие связи лобных долей как с затылочными, височными, теменными областями, так и с лимбическими отделами коры.

Таким образом, то, что префронтальные отделы коры являются третичными образованиями, стоящими в теснейшей связи почти со всеми основными зонами коры головного мозга, не вызывает сомнений. И их отличие от третичных зон задних отделов заключается лишь в том, что третичные отделы лобных долей фактически надстроены над всеми отделами мозговой коры, осуществляя, таким образом, гораздо более универсальную функцию общей регуляции поведения , чем та, которую имеет "задний ассоциативный центр", или, иначе говоря, третичные поля второго (ранее описанного) блока.
______________________________________________________________________________________________

ВЗАИМОДЕЙСТВИЕ ТРЕХ ОСНОВНЫХ ФУНКЦИОНАЛЬНЫХ БЛОКОВ МОЗГА

Было бы неправильно предполагать, что каждый из описанных блоков может самостоятельно осуществлять ту или иную форму деятельности. Любая сознательная деятельность, как уже неоднократно отмечалось, всегда является сложной функциональной системой и осуществляется, опираясь на совместную работу всех трех блоков мозга, каждый из которых вносит свой вклад в ее осуществление.
Современные представления о строении психических процессов исходят из модели "рефлекторного кольца" или сложной саморегулирующейся системы, каждое звено которой включает как афферентные, так и эффекторные компоненты, а все звенья этой системы в целом носят характер сложной и активной психической деятельности.

Было бы неверно, например, представлять ощущение и восприятие как чисто пассивные процессы. Известно, что уже в ощущение включены двигательные компоненты, и современная психология представляет ощущение, а тем более восприятие как рефлекторный акт, включающий как афферентное, так и эфферентное звено. Чтобы убедиться в сложном активном характере ощущений, достаточно напомнить, что даже у животных оно включает как необходимое звено отбор биологически значимых признаков, а у человека - и активное кодирующее влияние языка.

Особенно отчетливо выступает активный характер сложного предметного восприятия. Хорошо известно, что предметное восприятие носит не только полирецепторный характер, что оно, опираясь на совместную работу целой группы анализаторов, всегда имеет в своем составе и активные двигательные компоненты.

Решающую роль движений глаз в зрительном восприятии отмечал еще И.М. Сеченов, но экспериментально доказано это было лишь в последнее время рядом психофизиологических исследований, показавших, что:

Неподвижный глаз практически не может устойчиво воспринимать комплексные предметы

Сложное предметное восприятие всегда предполагает использование активных, поисковых движений глаз, выделяющих нужные признаки и лишь постепенно принимающих свернутый характер

Все эти факты делают очевидным, что восприятие осуществляется при совместном участии всех трех функциональных блоков мозга, из которых:
первый - обеспечивает нужный тонус коры
второй - дает возможность анализа и синтеза поступающей информации
третий – формирует необходимые направленные поисковые движения

Последнее придает активный характер воспринимающей деятельности человека в целом. Аналогичное можно сказать и о построении произвольных движений и действий.

Участие эфферентных механизмов в построении движения самоочевидно. Однако, движение не может управляться одними эфферентными импульсами. Для его организованного выполнения необходимы постоянные афферентные импульсы , сигнализирующие состояние сочленений и мышц, положение сегментов движущегося аппарата и те пространственные координаты, в которых движение протекает.

Все это делает понятным, что произвольное движение, а тем более предметное действие опираются на совместную работу самых различных отделов мозга:
если аппараты первого блока обеспечивают нужный тонус мышц, без которого никакое координированное движение не было бы возможным
то аппараты второго блока позволяют осуществить те афферентные синтезы, в системе которых протекает движение
а аппараты третьего блока обеспечивают подчинение движения и действия соответствующим намерениям, способствуют созданию программы выполнения двигательных актов и осуществляют как регуляцию движений, так и контроль над ними, без чего не может сохраниться организованный, осмысленный характер двигательных и любых других действий

Все это делает очевидным, что только учет взаимодействия всех трех функциональных блоков мозга, их совместной работы и того, каков специфический вклад каждого из них в отражательную деятельность мозга, позволяет правильно решать вопрос о мозговых механизмах психической деятельности.

ОСНОВЫ НЕЙРОПСИХОЛОГИИ

Тема 1. Функциональная организация мозга и психическая деятельность........1

Тема 2. Локальные системы мозга........................................................................9

Тема 3. Психические процессы и их мозговая организация ………………......17

ТЕМА 1 Функциональная организация мозга и психическая деятельность

1. Каковы основные принципы эволюции и строения мозга как органа психики? Основными принципами эволюции и строения мозгаявляются:

1) На различных этапах эволюции отношения организма животного со средой и его поведение регулировались различными аппаратами нервной системы, и, следовательно, головной мозг (ГМ) человека является продуктом длительного исторического развития .

На элементарных уровнях развития животного мира (напр., у гидроидных полипов) прием сигналов и организация движений осуществляются сетевидной нервной системой; на этом этапе эволюции единый центр, перерабатывающий информацию и регулирующий поведение животного, отсутствует. Поток возбуждения определяется теми временными доминирующими очагами , которые создаются в том или ином участке нервного аппарата животного. В процессе эволюции сетевидная нервная система, сохранившаяся в организме животных, уступила ведущее место новым образованиям. В передних отделах ГМ животного концентрировались сложные рецепторные приборы, и сигналы, получаемые ими, стали направляться в передний ганглий, который перерабатывал получаемую информацию и переключал возбуждение на эфферентные пути, идущие к двигательному аппарату животного.

Далее эволюция мозга пошла по двум стратегическим направлениям. Первое направление заключается в максимальной предуготованности организма к будущим условиям существования (напр. насекомые). Передний ганглий насекомых становится идеальным органом реализации врожденного инстинктивного поведения, которое может пускаться в ход элементарными стимулами и, тем не менее, иметь удивительную по своей сложности программу. Нервные аппараты переднего ганглия, хорошо приспособленные для реализации врожденных программ поведения, не могут, однако, обеспечить приспособления к резко меняющимся условиям среды. Сохранение вида оказывается возможным благодаря избыточному производству индивидуальных особей, из которых выживают лишь очень немногие.

Второе направление: у млекопитающих врожденные, инстинктивные формы реагирования «обрастают» индивидуальными реакциями, основанными на личном опыте. Поведение млекопитающего в разнообразных ситуациях гораздо менее определенно, чем поведение насекомых, шаблонов поведения становится все меньше, а исследовательские, ориентировочные реакции занимают все больше места. Для гибкой формы жизнедеятельности требуется гораздо больше мозгового вещества. Таким задачам отвечает ГМ.


Мозг насекомого – это многопрограммный исполнительный автомат, тогда как мозг млекопитающего – автомат самообучающийся, способный к вероятностному прогнозированию. Однако главное не в количестве, а в качестве структур мозгового вещества. В рамках второго направления эволюции происходит неуклонное увеличение размеров коры больших полушарий мозга. Этот отдел является наименее специализированным и наиболее важным для фиксации личного опыта, что предполагает возможность непрерывного совершенствования.

2) Прежние нервные аппараты сохраняются в ГМ, уступая ведущее место новым образованиям и приобретая иную роль. Они становятся аппаратами, обеспечивающими фон поведения, принимающими активное участие в регуляции состояний организма, передавая функции получения, переработки, хранения информации, создания новых программ поведения и регуляции и контроля сознательной деятельности высшим аппаратам КГМ.

Разные по сложности формы поведения у человека могут осуществляться с помощью различных уровней нервной системы:

– простейшие элементы поведения (коленный рефлекс) осуществляются лишь механизмами спинного мозга;

– сложная врожденная форма поведения – регуляция гомеостаза, обеспечиваемая дыханием, пищеварением и терморегуляцией, осуществляется посредством механизмов, заложенных в стволе ГМ (продолговатом мозге, гипоталамусе);

– еще более сложные формы поведения, предполагающие обеспечение тонуса, синергии и координацию, тесно связаны с работой промежуточного мозга и подкорковых двигательных узлов; поражение их, не вызывая нарушения сложных познавательных процессов, приводит к грубому нарушению «фонового» поведения, напр. паркинсонизм – синдром при поражении экстрапирамидной системы;

– наиболее сложные формы деятельности не могут быть обеспечены без участия КГМ, являющейся органом высших форм поведения животных и сознательного поведения человека.

3) Принцип вертикального строения функциональных систем мозга . Все высшие психические функции имеют не только горизонтальную (корковую), но и вертикальную (подкорковую) мозговую организацию. Разобщение отдельных зон коры путем круговой изоляции может не влечь за собой существенных изменений в поведении животных, в то время как подрезка коры, изолирующая её от нижележащих образований, неизбежно приводит к значительным нарушениям ее регулирующих функций. Все это означает, что отдельные участки КГМ соединяются между собой не только с помощью горизонтальных (транскортикальных) связей, но и через нижележащие образования посредством системы вертикальных связей. Восходящие и нисходящие связи превращают мозг в саморегулирующуюся систему. Сложные формы поведения могут осуществляться разными уровнями нервной системы, каждый из которых вносит в функциональную организацию поведения свой вклад. Низшие уровни нервного аппарата участвуют в организации работы КГМ, регулируя и обеспечивая ее тонус. Но низшие уровни нервного аппараты не работают в полной изоляции от КГМ и сами испытывают ее регулирующее влияние.

2. Какова структурная и функциональная организация КГМ? Мозг и его кора обладают неоднородным строением. Различают серое вещество, составляющее мозговую кору и подкорковые серые образования и белое вещество, состоящее из проводящих волокон, связывающих отдельные участки КГМ между собой и с периферией. КГМ состоит из 6 слоев клеток. Только IV и V слои непосредственно связывают КГМ с периферией.

К полям коры, отличающимся развитым IV слоем мелкозернистых нервных клеток подходят чувствительные волокна, начинающиеся в рецепторах; эти зоны названы первичными сенсорными областями КГМ. Выделяются общечувствительная (теменная), зрительная (затылочная) и слуховая (височная) чувствительные области.

Гигантские пирамидные клетки Беца, составляющие V слой коры, оказались источниками двигательных импульсов, идущих от коры к периферической мускулатуре, а передняя центральная извилина, в которой они сосредоточены – названа первичной моторной областью КГМ. Волокна, начинающиеся в передней центральной извилине и подходящие к ряду ядер черепно-мозговых нервов (ЧМН) и передним рогам спинного мозга (СП), составляют двигательный (пирамидный) проводящий путь.

Над каждой первичной зоной коры с преобладающим развитием IV – афферентного или V – эфферентного слоев клеток надстраивается система вторичных зон, в которых преобладающее место занимают более сложные по своему строению II и III слои. Эти слои состоят из клеток с короткими аксонами, большая часть которых не имеет прямой связи с периферией и получает свои импульсы из лежащих в глубине мозга подкорковых образований, осуществляющих первичную переработку приходящих с периферии импульсов.

В КГМ человека можно выделить области, которые целиком состоят из верхних слоев клеток и не имеют прямой связи с периферией. Эти области получили название третичных зон коры . В КГМ можно выделить две группы третичных областей. Первая из них – задняя – расположена на стыке затылочной, теменной и височной областей; её обозначают как задний ассоциативный центр или зону перекрытия корковых отделов экстероцептивных анализаторов. Эта зона обеспечивает совместную работу корковых звеньев отдельных анализаторов. Вторая – передняя – расположена в лобной доле спереди от двигательной зоны коры и надстраивается над её двигательными отделами. Она связана со всеми остальными отделами коры и, играет существенную роль в построении наиболее сложных программ поведения человека.

Иерархическое строение КГМ является продуктом длительного исторического развития. У человека первичные участки коры занимают совсем небольшое место, будучи оттесненными хорошо развитыми вторичными участками, а третичные зоны коры становятся наиболее развитыми системами и занимают подавляющую часть КГМ. Это показывает, что процесс усложнения психической деятельности, предполагающий сознательный характер программирования деятельности, связан с развитием высших слоев коры.

Другой функциональной характеристикой строения КГМ животного является отношение между массой клеточных тел и массой клеточного вещества. В осуществлении сложных нервных процессов решающую роль играет не только тело нервной клетки, но и ее многочисленные отростки и окружающие нейроны глиальные клетки. Увеличение отношения глиальной ткани к массе нервных клеток (их тел) на каждой новой ступени эволюции указывает на повышение управляемости функций отдельных мозговых зон .

Существенной характеристикой является степень миелинизации соответствующих нервных образований. Процесс миелинизации – по завершении которого нервные элементы становятся готовыми к нормальному функционированию – протекает в разных зонах коры неравномерно: миелинизация элементов первичных зон заканчивается довольно рано; процесс миелинизации во вторичных и третичных зонах коры иногда продолжается до 7-12-летнего возраста. Аппараты, соответствующие наиболее сложным, комплексным формам психической деятельности созревают на относительно поздних этапах развития и, следовательно, формирование психической деятельности человека идет от более простых к сложным, опосредствованным формам.

3. Что такое синдромный анализ и какова системная организация психических процессов? При локальных поражениях ГМ (преимущественно коры) нарушается не одна какая-либо психическая функция, а целая совокупность функций, составляющих единый нейропсихологический синдром, в основе которого лежит нарушение определенного фактора. Синдромный анализ – основной путь нейропсихологического исследования.

Синдромный анализ основан на трех основных положениях. Первое – он предполагает тщательную качественную квалификацию нарушений психических функций, а не просто констатацию того, что функция нарушена. Под качественным анализом понимается определение формы нарушения психической функции. Напр. при обнаружении у больного мнестического дефекта необходимо выяснить, носят эти нарушения модально-неспецифический характер или связаны лишь с определенной модальностью, страдает преимущественно звено непосредственного или отсроченного воспроизведения материала и т.д.

Второе положение: нарушений высших психических функций заключается в анализе и сопоставлении первичных нарушений, непосредственно связанных с нарушенным фактором, и вторичных расстройств, которые возникают по законам системной организации функций. Любая психическая деятельность человека является сложной функциональной системой, реализация которой обеспечивается целым комплексом совместно работающих зон мозга. Каждая зона мозга, участвующая в обеспечении функциональной системы, ответственна за свой фактор (свою функцию), и его устранение приводит к тому, что нормальное осуществление общей функции (которая складывается из многих факторов) становится невозможным, т.е. функциональная система в целом может нарушаться при поражении большого числа зон, причем при различных по локализации поражениях она нарушается по-разному.

Третье положение заключается в необходимости изучения состава не только нарушенных, но и сохранных высших психических функций. Любой ограниченный корковый очаг поражения нарушает протекание одних психических процессов, оставляя другие процессы в сохранности – принцип двойной диссоциации функций .

Таким образом, качественная квалификация нарушений психических процессов, выделение основного дефекта (т.е. первичных нарушений) и вторичных системных нарушений, анализ состава не только нарушенных, но и сохранных психических функций и составляет сущность синдромного анализа, направленного на топическую диагностику локальных поражений ГМ.

Тщательный нейропсихологический анализ синдрома и двойной диссоциации, которая возникает при локальных поражениях мозга, позволяет приблизиться к структурному анализу (внутреннему составу) психических процессов. Для непредвзятого наблюдателя музыкальный и речевой слух могут казаться двумя вариантами одного и того же психологического процесса. Но разрушение определенных участков левой височной области приводит к выраженному нарушению речевого слуха (делая различение близких звуков речи совершенно недоступным), но сохраняет музыкальный слух неповрежденным. Есть описание одного выдающегося композитора, который после кровоизлияния в левую височную область перестал различать звуки речи и понимать обращенную к нему речь, но продолжал создавать блестящие музыкальные произведения. Это означает, что столь близкие, казалось бы, психические процессы, как музыкальный и речевой слух, не только включают в свой состав разные факторы, но и опираются на работу различных мозговых зон.

Столь различные психологические процессы, как ориентировка в пространстве, счет и понимание сложных логико-грамматических структур, казалось бы, не имеют принципиально общих звеньев, которые позволяют объединить их в одну группу. Однако поражение теменно-затылочных (нижнетеменных) отделов левого полушария неизбежно приводит к нарушению всех этих процессов, и больной с подобной локализацией очага не только испытывает заметные трудности в пространственной ориентировке, но и обнаруживает грубейшие дефекты в счете и в понимании сложных логико-грамматических структур. Это показывает, что все указанные, казалось бы, столь различные функции включают общий фактор, и выделение этих общих факторов способствует гораздо более глубокому анализу структуры психологических процессов.

4. Какие выделяют основные функциональные блоки мозга? Психическая деятельность – это идеальная субъективно осознаваемая деятельность организма, осуществляемая с помощью нейрофизиологических процессов. Психическая деятельность осуществляется с помощью ВНД. Психическая деятельность протекает только в период бодрствования и осознается, а ВНД – и в период сна как неосознаваемая переработка информации, и в период бодрствования как осознаваемая и подсознательная переработка. Отдельные проявления психической деятельности человека, условно выделяемые в качестве самостоятельных объектов исследования называются психическими процессами (ощущение, восприятие, представление, мышление, внимание, эмоции, воля). Основное значение психических процессов состоит в приспособлении индивида к внешней среде.

Выделяют 3 основных функциональных блока (3 основных аппарата мозга), участие которых необходимо для осуществления любого вида психической деятельности: 1) блок регуляции тонуса и бодрствования; 2) блок приема, переработки и хранения информации; 3) блок программирования, регуляции и контроля сложных форм деятельности.

Каждый из этих основных блоков имеет иерархическое строение и состоит из надстроенных друг над другом корковых зон трех типов: первичных (проекционных), куда поступают импульсы с периферии или откуда направляются импульсы на периферию, вторичных (проекционно-ассоциативных), где происходит переработка получаемой информации или подготовка соответствующих программ, и третичных (зон перекрытия), которые являются наиболее поздно развивающимися аппаратами больших полушарий, и которые у человека обеспечивают наиболее сложные формы психической деятельности, требующие совместного участия многих зон мозговой коры.

Головной мозг – высший орган нервной системы – как анатомо-функциональное образование может быть условно подразделен на несколько уровней, каждый из которых осуществляет собственные функции.

I уровень кора головного мозга –осуществляет высшее управление чувствительными и двигательными функциями, преимущественное управление сложными когнитивными процессами.

II уровень базальные ядра больших полушарий –осуществляет управление непроизвольными движениями и регуляцию мышечного тонуса.

III уровень гиппокамп, гипофиз, гипоталамус, поясная извилина, миндалевидное ядро – осуществляет преимущественное управление эмоциональными реакциями и состояниями, а также эндокринную регуляцию.

IV уровень (низший) – ретикулярная формация и другие структуры ствола мозга –осуществляет управление вегетативными процессами.

Анатомически головной мозг подразделяется на ствол, мозжечок и большие полушария (правое и левое). В каждом полушарии имеется 4 доли: лобная, теменная, затылочная, височная.

У человека по сравнению с животными существенно больше развита кора больших полушарий (кора головного мозга) – наиболее высокодифференцированный раздел нервной системы. Топографически различают конвекситальную (относящаяся к своду черепа), базальную (относящаяся к основанию черепа), медиальную (между полушариями) кору головного мозга.

5. Что такое блок регуляции тонуса и бодрствования? Для того чтобы обеспечивалось полноценное протекание психических процессов, человек должен находиться в состоянии бодрствования. Только в оптимальных условиях бодрствования человек может принимать и перерабатывать информацию, вызывать в памяти нужные избирательные системы связей, программировать свою деятельность и осуществлять контроль за протеканием своих психических процессов, исправляя ошибки и сохраняя направленность своей деятельности. В состоянии сна четкая регуляция психических процессов невозможна, всплывающие воспоминания и ассоциации приобретают неорганизованный характер, и направленное избирательное (селективное) выполнение психической деятельности становится невозможным.

Для осуществления организованной, целенаправленной деятельности необходимо поддерживать оптимальный тонус коры . Аппараты, обеспечивающие и регулирующие тонус коры, находятся не в самой коре, а в лежащих ниже стволовых и подкорковых отделах мозга; эти аппараты находятся в двойных отношениях с корой, тонизируя её и в то же время сами испытывая её регулирующее влияние. В стволе ГМ находится особое нервное образование, которое по своему строению и по своим функциональным свойствам приспособлено к тому, чтобы осуществлять роль механизма, регулирующего состояния КГМ, т.е. способно изменять её тонус и обеспечивать её бодрствование. Это ретикулярная формация – образование, построенное по типу нервной сети, в которую вкраплены тела нервных клеток, соединяющиеся друг с другом короткими отростками. По её сети возбуждение распространяется не отдельными, изолированными импульсами, не по закону «все или ничего», а градуально, постепенно меняя свой уровень и, т.о., модулируя (активируя и тормозя) состояние всего нервного аппарата .

Одни из волокон ретикулярной формации направляются вверх, оканчиваясь в расположенных выше нервных образованиях – таламусе, хвостатом теле, коре. Эти образования были названы восходящей ретикулярной системой , которая играет решающую роль в регуляции активности коры. Другие волокна ретикулярной формации имеют обратное направление: они начинаются от более высоко расположенных нервных образований – коры, хвостатого тела и ядер таламуса – и направляются к расположенным ниже структурам среднего мозга, гипоталамуса и мозгового ствола. Эти образования получили название нисходящей ретикулярной системы. Они ставят нижележащие образования под контроль тех программ, которые возникают в КГМ и для выполнения которых требуется модификация (изменение) и модуляция состояний бодрствования.

Оба отдела ретикулярной формации составляют единую саморегулирующуюся вертикально расположенную функциональную систему, построенную по принципу рефлекторного круга, которая может обеспечивать изменение тонуса коры, но которая вместе с тем сама находится под регулирующим влиянием тех изменений, которые наступают в КГМ. Это система пластичного приспособления к условиям среды в процессе активной деятельности. Каждый из отделов включают активационные и тормозные пути (разделы).

Выделяется 3 основных источника активации нервного аппарата. Первым источником активации являются обменные процессы организма ,лежащие в основе гомеостаза и инстинктивных процессов. Второй источник активации связан с поступлением в организм раздражений из внешнего мира и приводит к возникновению иных форм активации, проявляющихся в виде ориентировочного рефлекса. В гиппокампе значительное место занимают нейроны производящие как бы сличение (компарацию) старых и новых раздражителей и обеспечивающие реакцию на новые сигналы или их свойства с угасанием реакции (прекращением активности) на старые, уже привычные раздражители. Эти первые 2 источника связаны с восходящими связями ретикулярной формации.

Третий источник активации связан с тем, что значительная часть активности человека обусловлена намерениями и планами, перспективами и программами , которые формируются в процессе его сознательной жизни, являются социальными по своему заказу и осуществляются при ближайшем участии сначала внешней, а потом и его внутренней речи. Всякий сформулированный в речи замысел преследует некоторую цель и вызывает целую программу действий, направленных на достижение этой цели. Достижение цели прекращает активность. Но возникновение намерений и формулировка целей это не чисто интеллектуальный акт. Осуществление замысла или достижение цели требует определенной энергии и может быть обеспечено лишь при наличии некоторого уровня активности.

Этот источник активации связан с нисходящими связями коры . Именно эти связи и осуществляют регулирующее влияние мозговой коры на нижележащие стволовые образования и являются механизмом, с помощью которого возникшие в коре функциональные узоры возбуждения вовлекают аппараты ретикулярной формации древнего мозга и получают энергетический заряд.

Таким образом наряду со специфическими сенсорными и двигательными функциями, КГМ имеет и неспецифические модулирующие функции; раздражение определенных участков коры может оказывать как активирующие, так и тормозящие влияния на нижележащие нервные образования . Нисходящие волокна исходят, прежде всего, из лобных префронтальных отделов коры и являются тем аппаратом, посредством которого высшие отделы мозговой коры, непосредственно участвующие в формировании намерений и планов, управляют работой нижележащих аппаратов ретикулярной формации, таламуса и ствола, тем самым модулируя их работу и обеспечивая наиболее сложные формы сознательной деятельности.

Все это показывает, во-первых, что аппараты первого блока не только тонизируют кору, но и сами испытывают ее дифференцирующее влияние, и, во-вторых, что первый функциональный блок мозга работает в тесной связи с высшими отделами коры.

ВЫВОД: 1-ый блок построен по типу неспецифической нервной сети, которая осуществляет свою функцию путем постепенного, градуального изменения состояний. Первый блок воспринимает и перерабатывает различную информацию и регулирует состояние внутренней среды организма с помощью нейрогуморальных и биохимических механизмов. Первый блок участвует в осуществлении любой психической деятельности и, особенно в процессах внимания, памяти, эмоциональных состояниях и сознании в целом.

6. Что такое блок приема, переработки и хранения информации? Этот блок расположен в конвекситальных отделах коры и занимает ее задние отделы, включая в свой состав аппараты зрительной (затылочной), слуховой (височной) и общечувствительной (теменной) областей. Нейроны 2 блока работают по закону «все или ничего», принимая отдельные импульсы и передавая их на другие группы нейронов.

По своим функциональным особенностям аппараты этого блока приспособлены к приему экстероцептивных раздражений, приходящих в ГМ от периферических рецепторов, к анализу их на мельчайшие составляющие детали и к синтезу их в целые функциональные системы.

Основу этого блока составляют первичные проекционные зоны коры с высоким развитием нейронов IV афферентного слоя, обладающих высочайшей специфичностью. Эти зоны коры представляют собой корковый аппарат того или иного модально-специфического анализатора, построены по единому принципу иерархической организации .

Над первичными зонами коры 2-ого функционального блока мозга надстроены аппараты вторичных (гностических) зон коры, в которых IV слой уступает ведущее место II и III слоям, не имеющим столь выраженной модальной специфичности и включающим в свой состав значительное число ассоциативных нейронов с короткими аксонами, что позволяет комбинировать поступающие возбуждения в нужные «функциональные узоры» и осуществлять синтетическую функцию.

Но познавательная деятельность человека никогда не протекает, опираясь лишь на одну изолированную модальность (зрение, слух, осязание); любое предметное восприятие и тем более представление является результатом полимодальной деятельности. Поэтому познавательная деятельность должна опираться на совместную работу целой системы зон КГМ. Функцию обеспечения такой совместной работы целой группы анализаторов несут третичные зоны 2-ого блока (зоны перекрытия корковых отделов различных анализаторов). Эти зоны расположены на границе затылочного, височного и заднецентрального отделов коры («задний ассоциативный центр»). Функция их почти полностью сводится к интеграции возбуждений, приходящих из разных анализаторов. Подавляющая часть нейронов этих зон имеет мультимодальный характер и реагирует на комплексные признаки среды (напр., на признаки пространственного расположения, кол-во элементов), на которые не реагируют нейроны первичных и вторичных зон.

Деятельность третичных зон задних отделов коры необходима не только для успешного синтеза наглядной информации, но и для перехода от уровня непосредственного наглядного синтеза к уровню символических процессов, для оперирования значениями слов, сложными грамматическими и логическими структурами, системами чисел и отвлеченными соотношениями. Т.е. третичные зоны задних отделов коры являются аппаратами, участие которых необходимо для превращения наглядного восприятия в отвлеченное мышление, опосредствованное всегда внутренними схемами, и для сохранения в памяти организованного опыта.

Законы построения коры, входящей в состав 2-го и 3-го блоков мозга. Первый закон закон иерархического строения корковых зон. Иерархия между первичными, вторичными и третичными зонами коры не остаётся одинаковой в процессе онтогенеза: у маленького ребенка для успешного формирования вторичных зон необходима сохранность первичных зон, а для формирования третичных зон – достаточная сформированность вторичных зон коры. Поэтому нарушение в раннем возрасте низших зон коры соответствующих типов неизбежно приводит к недоразвитию более высоких зон коры; т.о., как это было сформулировано Л.С. Выго тским, основная линия взаимодействия зон коры в детском возрасте направлена «снизу вверх».

Наоборот, у взрослого человека с полностью сложившимися психологическими функциями ведущее место переходит к высшим зонам коры. Воспринимая окружающий мир, взрослый человек организует свои впечатления в логические системы: наиболее высокие, третичные, зоны коры у него управляют работой подчиненных им вторичных зон, а при поражении последних оказывают на их работу компенсирующее влияние. Такой характер взаимоотношений иерархически построенных зон коры в зрелом возрасте позволил Л.С. Выго тскому заключить, что на позднем этапе онтогенеза зоны коры взаимодействуют «сверху вниз».

Второй закон: закон убывающей специфичности иерархически построенных зон коры . Первичные зоны коры каждой из частей, входящих в состав 2-го блока, обладают максимальной модальной специфичностью. Вторичные зоны коры, где преобладают II и III слои, обладают модальной специфичностью в значительно меньшей степени. Будучи тесно связанными с корковыми отделами соответствующих анализаторов, эти зоны характеризуются модально-специфическими гностическими функциями. Здесь интегрируется в одних случаях зрительная (вторичные затылочные зоны), в других – слуховая (вторичные височные зоны), в третьих – тактильная информация (вторичные теменные зоны). Еще в меньшей степени модальная специфичность характеризует третичные зоны 2-ого блока: функция третичных зон приобретает надмодальный характер.

Вторичные и третичные зоны коры, в которых преобладают мультимодальные и ассоциативные нейроны и которые не имеют прямой связи с периферией, несмотря на убывающую специфичность, а может быть, как раз в силу такой убывающей специфичности, приобретают способность играть организующую, интегрирующую роль в работе более специфических зон, становятся ответственными за организацию функциональных систем, необходимых для осуществления сложных познавательных процессов. Ко вторичным полям афферентные импульсы поступают не из релейных (переключательных) ядер таламуса, а из ассоциативных, т.е. вторичные поля получают более сложную переработанную информацию с периферии, чем первичные.

Третий закон: закон прогрессивной латерализации функций , т.е. связи функций с определенным полушарием мозга по мере перехода от первичных зон коры к вторичным и затем третичным зонам.

Первичные зоны обоих полушарий мозга равноценны. Иначе обстоит дело при переходе к вторичным, а затем третичным зонам. С возникновением праворукости (её появление связано с трудом и относится к очень ранним этапам истории человека), а затем и связанной с ней речи, возникает известная латерализация функций, которая отсутствует у животных, но которая у человека становится важным принципом функциональной организации мозга.

Левое полушарие у правшей становится доминантным; оно начинает осуществлять речевые функции, в то время как правое полушарие, не связанное с деятельностью правой руки и речью, остается субдоминантным.

Доминантное полушарие играет существенную роль не только в мозговой организации самих речевых процессов, но и в мозговой организации всех связанных с речью высших форм психической деятельности – категориального восприятия, активной речевой памяти, логического мышления и др., в то время как субдоминантное полушарие в меньшей степени участвует в их протекании. У взрослого человека функции вторичных и третичных зон доминантного полушария начинают коренным образом отличаться от функций вторичных и третичных зон субдоминантного полушария.

ВЫВОД: 2-ой блок мозга расположен в задних отделах полушарий и включает в свой состав зрительные (затылочные), слуховые (височные) и общечувствительные (теменные) отделы КГМ и соответствующие подкорковые структуры. Аппараты 2-ого блока имеют иерархическое строение, распадаясь на первичные (проекционные) зоны, которые принимают информацию и дробят ее на мельчайшие составные части, вторичные (проекционно-ассоциативные) зоны, которые обеспечивают кодирование (синтез) этих составных частей и превращают соматотопическую проекцию в функциональную организацию, и третичные зоны (зоны перекрытия), обеспечивающие совместную работу различных анализаторов и выработку надмодальных (символических) схем, лежащих в основе комплексных форм познавательной деятельности.

Указанные иерархически построенные зоны коры 2-ого блока работают по законам убывающей модальной специфичности и возрастающей функциональной латерализации. Оба эти закона и обеспечивают возможность наиболее сложных форм работы мозга, лежащих в основе наиболее высоких видов познавательной деятельности человека, генетически связанных с трудом, а структурно – с участием речи в организации психических процессов.

7. Что такое блок программирования, регуляции и контроля сложных форм деятельности? Прием, переработка и хранение внешней информации составляют только одну сторону психической жизни человека. Её другую сторону составляет организация активной сознательной психической деятельности. С этой задачей и связан третий блок мозга – блок программирования, регуляции и контроля сложных формдеятельностью.

Человек не пассивно реагирует на поступающие сигналы. Он формирует планы и программы своих действий, следит за их выполнением и регулирует свое поведение, приводя его в соответствие с этими планами и программами; он контролирует свою сознательную деятельность, сличая эффект своих действий с исходными намерениями и корригируя допущенные им ошибки. Все эти процессы активной сознательной деятельности требуют иных мозговых аппаратов, чем аппараты 1-ого и 2-ого блока. Этим задачам и служат аппараты 3-его функционального блока, которые расположены в передних отделах больших полушарий, спереди от передней центральной извилины. «Выходными воротами» этого блока является двигательная зона коры , V слой которой содержит клетки Беца, волокна от которых идут к двигательным ядрам СМ, а оттуда к мышцам, составляя пирамидный путь.Передняя центральная извилина (занимает заднюю часть прецентральной области, 4 поле Бродмана) является первичной проекционной зоной , исполнительным аппаратом мозговой коры. Первичная двигательная кора не может работать изолированно; все движения человека в той или иной степени нуждаются в тоническом пластическом фоне ,который обеспечивается базальными ядрами и их волокнами (экстрапирамидный путь) .

Двигательный состав тех импульсов, которые первичная двигательная кора посылает на периферию, должен быть хорошо подготовлен, включен в определенные программы. Без такой подготовки импульсы, не могут обеспечить целесообразные движения. Решающее значение в подготовке двигательных импульсов имеют надстроенные над ней вторичные и третичные зоны, подчиняющиеся тем же принципам иерархического строения и убывающей специфичности. Основным отличием здесь является тот факт, что если во втором, афферентном, блоке мозга процессы идут от первичных к вторичным и третичным зонам, то в третьем, эфферентном, блоке процессы идут в нисходящем направлении, начинаясь в наиболее высоких – третичных и вторичных зонах, где формируются двигательные планы и программы, переходя затем к аппаратам первичной двигательной зоны, которая посылает подготовленные двигательные импульсы на периферию.

Другое отличие 3-его блока от 2-ого заключается в том, что 3-ий блок не содержит модально-специфических зон, представляющих собой отдельные анализаторы, а состоит из аппаратов эфферентного, двигательного типа, находящихся под постоянным влиянием аппаратов афферентного блока.

Роль основной вторичной зоны 3-его блока играют премоторные отделы лобной области (занимают подавляющую часть прецентральной области, 6 и 8 поле Бродмана). Раздражение этих отделов коры вызывает не сокращения отдельных мышц, а целые комплексы движений, имеющих системно организованный характер (повороты глаз, головы и всего тела и хватающие движения руки), что указывает на интегративную роль этих зон коры в организации движений.

Наиболее существенной частью 3-его блока мозга являются префронтальные отделы мозга (10 поле Бродмана), которые вследствие отсутствия в их составе клеток Беца и наличия во II и III слоях большого числа мелких клеток (гранул) иногда называют гранулярной лобной корой. Эти отделы мозга относятся к третичным зонам коры, которые выполняют ассоциативные функции, а также играют решающую роль в формировании намерений и программ, в регуляции и контроле наиболее сложных форм поведения человека.

Префронтальная область мозга имеет богатейшую систему связей с нижележащими отделами мозга, ретикулярной формацией и практически со всеми отделами коры. Благодаря двустороннему характеру этих связей префронтальные отделы коры находятся в особенно выгодном положении как для вторичной переработки сложнейших афферентаций, приходящих от всех отделов мозга, так и для организации эфферентных импульсов, позволяющих оказывать регулирующие воздействия на все эти структуры.

Лобные доли получают импульсы от систем 1-ого блока, «заряжаясь» от него, в то же время оказывают интенсивное воздействие на образования ретикулярной формации, придавая её активирующим импульсам дифференцированный характер и приводя их в соответствие с теми динамическими схемами поведения, которые формируются непосредственно в лобной коре.

В отличие от третичных зон задних отделов мозга третичные отделы лобных долей фактически надстроены над всеми отделами мозговой коры (благодаря своим обширным связям), выполняя, таким образом, гораздо более универсальную функцию общей регуляции поведения, чем та, которую имеет задний ассоциативный центр .

Разрушение префронтальной коры приводит к глубокому нарушению сложных программ поведения и к выраженному растормаживанию непосредственных реакций на побочные раздражители (гиперреактивность), в результате чего выполнение сложных программ поведения становится невозможным. Поведение животного после экстирпации лобных долей мозга глубоко изменяется. У такого животного нельзя отметить каких-либо нарушений в работе отдельных органов чувств, однако осмысленное, целенаправленное поведение глубоко страдает. Это проявляется не только в отношении актуально действующих сигналов, но и в формировании активного поведения, направленного на будущее. Также животное без лобных долей оказывается не в состоянии обнаруживать и исправлять допускаемые ошибки, вследствие чего поведение его теряет организованный, осмысленный характер.

ВЫВОД: к 3-ему функциональному блоку относится конвекситальная лобная кора со всеми её корковыми и подкорковыми связями. В передней центральной извилине берёт начало пирамидный путь. Анатомическое строение 3-его блока мозга обусловливает его ведущую роль в программировании и контроле за протеканием психических функций, в формировании замыслов и целей психической деятельности, в регуляции и контроле за результатами отдельных действий, деятельности и поведения в целом.

8. Каково взаимодействие трех основных функциональных блоков мозга? Согласно современным психологическим представлениям, каждая психическая деятельность имеет строго определенную структуру: она начинается с фазы мотивов, намерений, замыслов, которые затем превращаются в определенную программу деятельности, включающую «образ результата» и представление о способах реализации программы, после чего продолжаете в виде фазы реализации программы с помощью определенных операций. Завершается психическая деятельность фазой сличения полученных результатов с исходным «образом результата». В случае несоответствия этих данных психическая деятельность продолжается до получения нужного результата. Эта схема (или психологическая структура) психической деятельности может быть соотнесена с мозгом следующим образом.

В первичной стадии формирования мотивов (намерений) в любой сознательной психической деятельности (гностической, мнестической, интеллектуальной) принимает участие преимущественно первый блок мозга. Он обеспечивает также оптимальный общий уровень активности мозга и избирательные, селективные формы активности, необходимые для осуществления конкретных видов психической деятельности. Первый блок мозга преимущественно ответствен и за эмоциональное «подкрепление» психической деятельности (переживание «успеха-неуспеха»).

Стадия формирования целей, программ (программирования мнестической деятельности ) связана преимущественно с работой 3 блока мозга так же, как и стадия контроля за реализацией программы .

Операциональная стадия (стадию использования различных мнестических приемов) деятельности осуществляется преимущественно с помощью второго блока мозга.

Поражение любого из блоков отражается на любой психической деятельности, так как приводит к нарушению соответствующей стадии (фазы, этапа) её реализации.

Современные представления о строении психических процессов исходят из модели рефлекторного кольца или сложной саморегулирующейся системы, каждое звено которой включает как афферентные, так и эфферентные компоненты и которая в целом носит характер сложной и активной психической деятельности. Напр. предметное восприятие носит не только полирецепторный характер, опираясь на совместную работу целой группы анализаторов, но всегда включает в свой состав активные двигательные компоненты. Решающую роль движений глаз в зрительном восприятии отмечал еще И.М. Сеченов. Неподвижный глаз практически не может воспринимать изображение, состоящее из многих компонентов; сложное предметное восприятие предполагает активные, поисковые движения глаз, выделяющие нужные признаки, и лишь постепенно, по мере развития принимает свернутый характер.

Вывод: восприятие осуществляется при совместном участии всех функциональных блоков мозга, из которых первый обеспечивает нужный тонус коры, второй осуществляет анализ и синтез поступающей информации, а третий обеспечивает направленные поисковые движения, создавая тем самым активный характер воспринимающей деятельности. Такое сложное строение восприятия объясняет, почему его нарушения могут возникать при поражении различных, далеко расположенных друг от друга, мозговых аппаратов.

Другой пример о построении произвольного движения и действия. Участие эфферентных механизмов в построении движения очевидно, но движение не может управляться одними эфферентными импульсами и что для его организованного протекания необходимы постоянные афферентные процессы, сигнализирующие о состоянии сочленений и мышц, положении сегментов движущегося аппарата и тех пространственных координатах, в которых движение протекает. Т.о. произвольное движение, и тем более предметное действие, опирается на совместную работу самых различных отделов мозга, и если аппараты 1-го блока обеспечивают нужный тонус мышц, без которого никакое координированное движение невозможно, то аппараты 2-го блока дают возможность осуществить те афферентные синтезы, в системе которых протекает движение, а аппараты 3-го блока обеспечивают подчинение движения и действия соответствующим намерениям, создают программы выполнения двигательных актов и обеспечивают ту регуляцию и контроль протекания движений, благодаря которым сохраняется его организованный, осмысленный характер.

Первый функциональный блок составляют анализаторы, или сенсорные системы. Анализаторы выполняют функцию приема и переработки сигналов внешней и внутренней среды организма. Каждый анализатор настроен на определенную модальность сигнала и обеспечивает описание всей совокупности признаков воспринимаемых раздражителей. Модальная специфичность анализатора в первую очередь определяется особенностями функционирования его периферических образований и специфичностью рецепторных элементов. Однако в значительной степени она связана с особенностями структурной организации центральных отделов анализатора, упорядоченностью межнейронных связей всех морфологических образований от рецепторного уровня до коркового конца (проекционных зон).

Анализатор - это многоуровневая система с иерархическим принципом ее конструкции. Основанием анализатора служит рецепторная поверхность, а вершиной - проекционные зоны коры. Каждый уровень этой морфологически упорядоченно организованной конструкции представляет собой совокупность клеток, аксоны которых идут на следующий уровень (исключение составляет верхний уровень, аксоны которого выходят за пределы данного анализатора). Взаимоотношения между последовательными уровнями анализаторов построены по принципу «дивергенции- конвергенции». Чем выше нейронный уровень анализаторной системы, тем большее число нейронов он включает. На всех уровнях анализатора сохраняется принцип топической проекции рецепторов. Принцип многократной рецептотопической проекции способствует осуществлению множественной и параллельной переработки (анализу и синтезу) рецепторных потенциалов («узоров возбуждений»), возникающих под действием раздражителей.



Уже в функциональной организации клеточного аппарата рецепторного уровня анализаторов выявились существенные черты их приспособления к адекватному отражению действующих раздражителей (специфичность рецепторов по фото-, термо-, хемо- и другим видам «энергии»). Известный закон Фехнера о логарифмическом отношении силы раздражителя и интенсивности ощущения получил объяснение в частотных характеристиках разряда рецепторных элементов. Обнаруженный в 1958 г. Ф. Ратлиффом эффект латерального торможения в глазе мечехвоста объяснил способ контрастирования изображения, улучшающий возможности предметного зрения (детекции формы). Механизм латерального торможения выступил как универсальный способ формирования селективных каналов передачи информации в центральной нервной системе. Он обеспечивает центральным нейронам анализаторов избирательную настройку их рецептивного поля на определенные свойства раздражителя. Нейрон, стоящий на выходе рецептивного поля, может выделять один признак раздражителя (простые детекторы) или комплекс его свойств (сложные детекторы). Детекторные свойства нейрона обусловливаются структурной организацией его рецептивного поля. Нейроны-детекторы более высокого порядка образуются в результате конвергенции нейронов-детекторов низшего (более элементарного) уровня. Нейроны-детекторы сложных свойств формируют детекторы «сверхсложных» комплексов. Высший уровень иерархической организации детекторов достигается в проекционных зонах и ассоциативных областях коры мозга.

Проекционные зоны анализаторных систем занимают наружную (конвекситальную) поверхность новой коры задних отделов мозга. Сюда входят зрительная (затылочная), слуховая (височная) и общечувствительная (теменная) области коры. В корковый отдел этого функционального блока включается также представительство вкусовой, обонятельной, висцеральной чувствительности. При этом наиболее обширные области в коре занимает та сенсорная система, которая имеет наибольшее экологическое значение для данного вида.

Первичные проекционные зоны коры состоят главным образом из нейронов 4-го афферентного слоя, для которых характерна четкая топическая организация. Значительная часть этих нейронов обладает высочайшей специфичностью. Так, например, нейроны зрительных областей избирательно реагируют на определенные признаки зрительных раздражителей: одни - на оттенки цвета, другие - на направление движения, третьи - на характер линий (край, полоса, наклон линии) и т. п. Однако следует отметить, что в первичные зоны отдельных областей коры включены также нейроны мультимодального типа, реагирующие на несколько видов раздражителей. Кроме того, там же имеются нейроны, реакция которых отражает воздействие неспецифических (лимбико-ретикулярных или модулирующих) систем.

Вторичные проекционные зоны коры располагаются вокруг первичных зон, как бы надстраиваясь над ними. В этих зонах 4-й афферентный слой уступает ведущее место 2-му и 3-му слоям клеток. Для этих нейронов характерно детектирование сложных признаков раздражителей, однако при этом сохраняется модальная специфичность, соответствующая нейронам первичных зон. Поэтому предполагается, что усложнение детекторных селективных свойств нейронов вторичных зон может происходить путем конвергенции на них нейронов первичных зон. В первичной зрительной коре (17-е поле Бродмана) содержатся в основном нейроны-детекторы простых признаков предметного зрения (детекторы ориентации линий, полосы, контраста и т. п.), а во вторичных зонах (18-е и 19-е поля Бродмана) появляются детекторы более сложных элементов контура: края, ограниченной длины линий, углов с различной ориентацией и др. . Первичные (проекционные) зоны слуховой (височной) коры представлены 41-м полем Бродмана (рис. 4), нейроны которого модально специфичны и

Рис. 4. Карта цитоархитектонических полей коры головного мозга.

Конвекситальная поверхность коры больших полушарий: а - первичные поля; б - вторичные поля; в - третичные поля

реагируют на различные свойства звуковых раздражителей. Как и первичное зрительное поле, эти первичные отделы слуховой коры имеют четкую рецептотопию. Над аппаратами первичной слуховой коры надстроены вторичные зоны слуховой коры, расположенные во внешних отделах височной области (22-е и частично 21-е поля Бродмана). Они также состоят преимущественно из мощно развитого 2-го и 3-го слоя клеток, реагирующих избирательно одновременно на несколько частот и интенсивностей: звукового раздражителя.

Наконец, тот же принцип функциональной организации сохраняется и в общечувствительной (теменной) коре. Основой и здесь являются первичные или проекционные зоны (3-, 1- и 2-е поля Бродмана), толща которых также преимущественно состоит из обладающих модальной специфичностью нейронов 4-го слоя, а топография отличается четкой соматотопической проекцией отдельных сегментов тела. Вследствие чего раздражение верхних участков этой зоны вызывает появление кожных ощущений в нижних конечностях, средних участков - в верхних конечностях контрлатеральной стороны, а раздражение пунктов нижнего пояса этой зоны - соответствующие ощущения в контрлатеральных отделах лица, губ и языка. Над первичными зонами располагаются вторичные зоны общечувствительной (теменной) коры (5-е и частично 40-е поле Бродмана), состоящие преимущественно тоже из нейронов 2-го и 3-го слоев, и их раздражение приводит к возникновению более комплексных форм кожной и кинестетической чувствительности (см. рис. 4).

Таким образом, основные, модально-специфические зоны анализаторов мозга построены по единому принципу иерархической структурной и функциональной организации. Первичные и вторичные зоны, согласно И.П. Павлову, составляют центральную часть, или ядро, анализатора в коре, нейроны которого характеризуются избирательной настройкой на определенный набор параметров раздражителя и обеспечивают механизмы тонкого анализа и дифференцировки раздражителей. Взаимодействие первичных и вторичных зон носит сложный, неоднозначный характер и в условиях нормальной деятельности обусловливает согласованное содружество процессов возбуждения и торможения, которое закрепляет макро- и микроструктуру нервной сети, занятой анализом афферентного потока в первичных проекционных сенсорных полях. Это создает основу для динамического межанализаторного взаимодействия, осуществляемого в ассоциативных зонах коры.

Ассоциативные области (третичные зоны) коры являются новым уровнем интеграции: они занимают 2-й и 3-й клеточные (ассоциативные) слои коры, на которых протекает встреча мощных афферентных потоков, как одномодальных, разномодальных, так и неспецифических. Подавляющее большинство ассоциативных нейронов отвечает на обобщенные признаки стимулов - на количество элементов, пространственное положение, отношения между элементами и пр. Конвергенция разномодальной информации необходима для целостного восприятия, для формирования «сенсорной модели мира», которая возникает в результате сенсорного обучения.

Ассоциативные зоны расположены на границе затылочной, височной и заднетеменной коры. Основную их часть составляют образования нижнетеменной корковой области, которая у человека развилась настолько, что составляет едва ли не четвертую часть всех образований описываемого сенсорного блока мозга. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки (избирательного различения) воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации - для оперирования значениями слов и использования их для отвлеченного мышления, т.е. для того синтетического характера восприятия, о котором писал в свое время И.М. Сеченов.

Клинические наблюдения различных очаговых поражений третичных зон мозга человека накопили большой материал о взаимосвязи ассоциативных областей с различными функциональными расстройствами. Известно, что поражения лобно-височно-теменной области, так называемых речевых зон (имеется в виду левое полушарие), связаны с возникновением афазии (расстройства речи). При поражении нижневисочной области наблюдают предметную агнозию (нарушение процесса узнавания), теменных областей или угловой извилины теменной доли - развитие оптико-пространетвенной агнозии, при поражении левой височной доли обнаруживается цветовая агнозия и т. д. Следует отметить, что локальные поражения ассоциативных зон коры могут быть связаны как с относительно элементарными сенсорными расстройствами, так и с нарушениями сложных форм восприятия.

У высших животных механизмы, выделяющие элементарные признаки раздражителей, составляют лишь начальное звено в механизме восприятия и дифференцировки стимулов (специфические ядра таламуса и первичные зоны коры). В высших сенсорных (вторичных и ассоциативных) зонах коры выступает закон убывающей специфичности, который является обратной стороной принципа иерархической организации нейронов-детекторов в специфической подкорке и проекционных зонах коры. В нем отражается переход от дробного анализа частных модально-специфических признаков раздражителя к синтезу более общих «схем» воспринимаемого. Закономерным является и то, что, несмотря на убывающую специфичность высших сенсорных полей коры (преобладание мультимодальных и ассоциативных нейронов), они являются в функциональном отношении более совершенными образованиями. Они выполняют функцию интеграции сложных комплексных раздражителей, им свойственна пластичность, они подвержены «неспецифической» активации со стороны модулирующих систем (ретикулярной формации, «центров» актуализированных потребностей и пр.).

Механизмы различения фигур и их пространственной организации у обезьян связывают с ассоциативными зонами (височной и заднетеменной) коры мозга. Известно, что обезьяны легко обучаются различению фигур по форме, размеру и их пространственной ориентации. После экстирпации нижневисочной коры обезьяна испытывает затруднения в различении фигур по их форме, но легко обучается дифференцировать их по размеру и ориентации. В то время как удаление затылочно-теменной зоны коры приводит к нарушению механизма пространственной дифференцировки фигур по отношению к телу, а также нарушению различения положения и перемещения собственного тела по отношению к окружающим предметам. Данные о физиологической роли височной и заднетеменной коры пока малочисленны. Так, для выяснения специфической функции нижневисочной коры и ее нейронной организации были проведены микроэлектродные исследования на обезьянах с использованием сложной стимульной программы: квадрат и круг сопровождались двигательным обучением, а крест и треугольник использовались в качестве незначащих стимулов. В результате исследований выделены три группы клеток: одни нейроны реагировали избирательно только на одну из четырех использовавшихся фигур, другие нейроны отвечали на две фигуры, третьи - на все четыре (без дифференцировки значимости стимула). Из экспериментов следовало, что эти нейроны выделяют сложные признаки зрительного изображения независимо от моторного обучения, при этом одни из них реагируют на появление соответствующего ему сенсорного стимула, другие отвечают лишь тогда, когда стимул сопровождается актом внимания. Нейроны пластичны, их специфическая реакция на сенсорный «образ» не связана с двигательным обучением и может меняться лишь в результате сенсорного

обучения. Следует отметить, что свойства этих нейронов хорошо согласуются с поведенческими и клиническими данными о роли нижневисочной коры в процессах формирования сложных образов. Следуя высказанной в 1949 г. гипотезе Д. Хебба, можно предположить, что отдельные нейроны ассоциативных зон коры связаны разнообразными путями и образуют клеточные ансамбли, выделяющие «подобразы», т.е. соответствующие унитарным формам восприятия. Эти связи, как отмечал Д. Хебб, настолько хорошо развиты, что достаточно активировать один нейрон, как возбуждается весь ансамбль. Позднее Ю. Конорский, опираясь на ставшие классическими данные Д. Хьюбела и Т. Визеля о корковых нейронах с «простыми», «сложными» и «сверхсложными» рецептивными полями и детектирующими все более сложные признаки зрительного стимула, выдвинул концепцию о «гностических нейронах». Он предположил, что унитарному восприятию (т. е. узнаванию знакомого лица с первого взгляда, знакомого голоса, знакомого запаха, характерного жеста и др.) соответствуют не ансамбли совозбужденных нейронов, а единичные нейроны - «гностические нейроны», интегрирующие возбуждение при действии сложных комплексных раздражителей. Гностические нейроны составляют главную деятельную основу высших уровней анализаторов, вследствие чего высшие уровни анализаторов представляют, по мнению Ю. Конорского, «гностические зоны». Гностическую зону можно рассматривать как своеобразную картотеку гностических нейронов, в которой представлены все унитарные «подобразы», сформировавшиеся у данного индивидуума в процессе сенсорного обучения.

Для концепции гностических нейронов первое время не было экспериментальных доказательств. Основой для предположений Ю. Конорского служили главным образом клинические данные. Однако вскоре стали появляться работы, из которых следовало, что « гностические нейроны », избирательно реагирующие на сложные комплексы раздражителей, существуют. В лобных долях мозга кошки были обнаружены клетки, которые избирательно реагируют на появление в поле зрения сложного зрительного стимула. У говорящих птиц существуют нейроны, избирательные к гласным звукам человеческой речи. Наконец, с 1980-х годов стали появляться серии работ по исследованию височных отделов коры мозга обезьян. В верхневисочной извилине были обнаружены нейроны, выделяющие определенные черты лица. По гностическим свойствам нейроны верхневисочной извилины отличались друг от друга. Одни нейроны отвечали только при фиксации внимания на интересующем обезьяну объекте, другие - при свободном блуждании взора, если стимул попадал на сетчатку. Одни нейроны давали максимальную реакцию на изображения лица человека в фас, другие - в профиль, третьи - на часть лица (верхнюю или нижнюю). При этом большинство нейронов реагирует на трехмерное изображение лица, а не на двумерное. Одни нейроны реагируют на лицо конкретного индивида, другие - на любое лицо независимо от индивидуальных черт. Большая часть нейронов верхневисочной извилины оказалась специфичной к живому конкретному лицу (человека или обезьяны). Формирование механизма избирательности в височной коре обезьяны происходит под влиянием индивидуального опыта, поскольку отмечается зависимость селективных свойств нейронов от круга лиц (животных и экспериментаторов), с которыми обезьяна была в общении до экспериментов. Данные нейронных исследований на обезьянах по восприятию изображений лица согласуются с результатами наблюдения больных с прозопагнозией (нарушением узнавания лиц), которые также свидетельствуют о наличии в области височных отделов коры мозга специального механизма по распознаванию

Известно, что система нейронов, детектирующих сложные сенсорные стимулы (гностические единицы), формируется на базе врожденной (генетически детерминированной) системы корковых нейронов с «жесткими» связями и большим резервом «лабильных», пластичных связей. В определенный критический (сенситивный) период онтогенетического развития и созревания межнейронных связей важным является функциональное задействование этих потенциальных связей. Их актуализация осуществляется под воздействием внешней стимуляции (индивидуального сенсорного опыта). В процесс приобретения индивидуального опыта дополнительный вклад вносит модулирующая система, оказывающая «неспецифическое» активирующее воздействие на соответствующий анализатор. Активирующее воздействие достигается через ориентировочно-исследовательский рефлекс или внимание. Этот процесс активации, по мнению Ю. Конорского, является необходимой предпосылкой для преобразования

потенциальных корковых связей в действующие, т.е. делает возможным формирование гностических нейронов, гностических зон и познавательной системы.

Модулирующие системы мозга

Блок модулирующих систем мозга регулирует тонус коры и подкорковых образований, оптимизирует уровень бодрствования в отношении выполняемой деятельности и обусловливает адекватный выбор поведения в соответствии с актуализированной потребностью. Только в условиях оптимального бодрствования человек может наилучшим образом принимать и перерабатывать информацию, вызывать в памяти нужные избирательные системы связей, программировать деятельность, осуществлять контроль над ней.

И.П. Павлов неоднократно возвращался к вопросам о решающей роли в реализации полноценной условнорефлекторной деятельности оптимального тонуса мозговой коры, необходимости высокой подвижности: нервных процессов, позволяющих с легкостью переходить от одной деятельности к другой. В условиях оптимальной возбудимости коры нервные процессы характеризуются известной концентрированностью, уравновешенностью возбуждения и торможения, способностью к дифференцировке и, наконец, высокой подвижностью нервных процессов, которые обусловливают протекание каждой организованной целенаправленности деятельности.

Аппаратом, выполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга. Ее часто называют лимбико-ретикулярный комплекс или восходящая активирующая система. К нервным образованиям этого аппарата относятся лимбическая и неспецифическая система мозга с ее активирующими и инактивирующими структурами. Среди активирующих образований прежде всего выделяют ретикулярную формацию среднего мозга, задний гипоталамус, синее пятно в нижних отделах ствола мозга. К инактивирующим структурам относят преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору.

Важнейшей частью модулирующего блока мозга является активирующая ретикулярная формация. Филогенетически ретикулярная формация мозга представляет наиболее древнее морфологическое образование. Еще в 1855 г. венгерским анатомом Йожефом Ленхошшеком была описана сеть из нервных клеток, находящаяся в середине ствола мозга. Цитоархитектоника этой своеобразной сетчатой структуры изучена еще недостаточно, очевидно, что ретикулярная формация не является аморфным образованием. В ретикулярной формации выделяют более или менее компактные и ограниченные клеточные скопления - ядра, отличающиеся различными морфологическими особенностями. В связи с этим одни авторы рассматривают ретикулярную формацию как диффузное вытянутое в длину единое образование, другие считают ее комплексом, состоящим из многих дифференцированных ядер с различной структурой и функциями. Латерально (с боков) ретикулярная формация окружена сенсорными путями. Таким образом, волокна ретикулярной формации окружены слоем сенсорных путей, которые к ней образуют множество коллатералей.

Функциональное назначение ретикулярной формации долго оставалось неизвестным. Первым указанием на нисходящие тормозные влияния ретикулярной формации явились опыты И.М. Сеченова, в которых наблюдалось угнетение рефлекторных реакций лягушки при раздражении межуточного мозга.

В.М. Бехтерев обнаружил восходящие влияния ретикулярной формации на двигательную область коры, приводящие к возникновению судорожных припадков при раздражении определенных участков Варолиева моста. Однако только электрофизиологические исследования выявили исключительную роль ретикулярной формации в интегративной деятельности мозга. Это открытие было сделано в 1949 г. Г. Мэгуном и Г. Моруцци. Путем стимуляции через электроды, вживленные в стволовой отдел мозга (на уровне среднего мозга), им удалось получить реакцию пробуждения спящего животного. Эту стволовую систему мозга Г. Мэгун назвал восходящей активирующей системой мозга.

Волокна ретикулярной формации, направляясь вверх, образуют модулирующие «входы» (как правило, аксодендритные синапсы) в выше расположенных мозговых образованиях, включая старую и новую кору. От старой и новой коры берут начало нисходящие волокна, которые идут в обратном направлении к структурам гипоталамуса, среднего мозга и к более низким уровням мозгового ствола. Через нисходящие системы связей все нижележащие образования оказываются под управлением и контролем тех программ, которые возникают в коре головного мозга и для выполнения которых требуется модуляция активности и модификация состояний бодрствования. Таким образом, блок активации с его восходящими и нисходящими влияниями работает (по принципу обратной связи) как единый саморегулирующий аппарат, который обеспечивает изменение тонуса коры, и вместе с тем сам находится под его контролем. Этот аппарат используется для пластичного приспособления организма к условиям среды. Он содержит в своей основе по крайней мере два источника активации: внутренний и внешний. Первый связан с обменными процессами, обеспечивающими внутреннее равновесие организма, второй - с воздействием внешней среды. Первым источником активации является внутренняя активность самого организма, или потребности. Любые отклонения от жизненно важных «констант» в результате изменения нервных или гуморальных влияний или вследствие избирательного возбуждения различных отделов мозга приводят к выборочному «включению» определенных органов и процессов, совокупная работа которых обеспечивает достижение оптимального состояния для данного вида деятельности организма.

Наиболее простые формы внутренней активности связаны с дыхательными и пищеварительными процессами, процессами внутренней секреции и другими, включенными в гомеостатический механизм саморегуляции, который устраняет нарушение во внутренней среде организма за счет своих резервов. Более сложные формы этого вида активации организованы в структуру врожденного поведения, направленного на удовлетворение определенной потребности. Естественно, для того чтобы обеспечить механизм инстинктивной регуляции поведения, необходима весьма избирательная и специфическая активация. Такая специфическая активация может быть функцией лимбической системы мозга, в которой важная роль принадлежит гипоталамусу.

Гипоталамус - часть межуточного мозга, содержит десятки высоко дифференцированных ядер, обладающих обширной и разносторонней системой связей. Его важной анатомической особенностью является высокая проницаемость сосудов гипоталамуса для крупномолекулярных белковых соединений. Этим обеспечиваются оптимальные условия для обмена веществ в нейронах гипоталамуса и получения информации о гуморальной среде организма. Его разносторонние регулирующие функции реализуются гуморальным путем и через обширные нервные связи с различными областями головного мозга.

Как часть активирующей системы мозга задний гипоталамус обусловливает поведенческую активацию. Это достигается прежде всего через регуляцию вегетативных и эндокринных функций организма. Таким образом, гипоталамус координирует внутренние потребности организма с его внешним поведением, направленным на достижение приспособительного эффекта. Гипоталамус входит в состав потребностно-мотивационной системы, являясь ее главной исполнительной структурой. При этом он не просто участвует в регуляции отдельных жизненно важных функций (голода, жажды, полового влечения, активной и пассивной обороны), а осуществляет их объединение в сложные комплексы или системы.

В зависимости от характера нервной и гуморальной сигнализации, собирающейся в гипоталамусе, в нем или накапливается, или тормозится мотивационное возбуждение, определяющее внешнее поведение (например, пищевое). При сильном пищевом возбуждении преобладает симпатическая активация коры больших полушарий, общее двигательное беспокойство и воспроизведение ранее заученного поведения. Удовлетворение актуализированной потребности сопровождается доминированием деятельности парасимпатической системы - двигательным успокоением и сонливостью. У бесполушарных животных стимуляция потребностных центров гипоталамуса вызывает лишь более общее, генерализованное мотивационное возбуждение, проявляющееся в общем, нецеленаправленном беспокойстве, поскольку более сложные формы поведения - поисковая реакция, выбор объекта и его оценка - регулируются вышележащими структурами, лимбическими образованиями и корой головного мозга.

Второй источник активации связан с воздействием раздражителей внешней среды. Ограничение контакта с внешней средой (сенсорная депривация) приводит к значительному снижению тонуса (возбудимости) коры мозга. В условиях резкого ограничения сенсорной информации у человека могут возникать галлюцинации, которые в какой-то мере компенсируют дефицит сенсорного возбуждения.

Часть непрерывного потока сенсорных сигналов, поставляемых в кору специфическими (анализаторными) системами, по коллатералям поступает в ретикулярную формацию. После многократных переключений в ее синапсах афферентное возбуждение достигает высших отделов головного мозга. Эти так называемые неспецифические активирующие влияния служат необходимым условием для поддержания бодрствования и осуществления любых поведенческих реакций. Помимо этого неспецифическая активация является важным условием для формирования селективных свойств нейронов коры в процессе онтогенетического созревания и обучения.

В аппарате восходящей ретикулярной формации сформировался механизм преобразования сенсорной информации в две формы активации: тоническую (генерализованную) и фазическую (локальную). Тоническая форма активации связана с функцией нижних стволовых отделов ретикулярной формации. Она генерализованно, диффузно поддерживает определенный уровень возбудимости в коре и подкорковых образованиях. Фазическая форма активации связана с верхними отделами ствола мозга, и прежде всего с неспецифической таламической системой, которая локально и избирательно распределяет воздействия восходящей активации на подкорковые образования, старую и новую кору.

Тоническая активация облегчается притоком возбуждений из различных органов чувств. «Экстренное» появление или исчезновение какого-либо раздражителя во внешней среде вызывает ориентировочный рефлекс и реакцию активации (экстренная мобилизация организма). Это поликомпонентная реакция, она связана с работой механизмов тонической и фазической активации ретикулярной формации (среднего мозга и неспецифических ядер таламуса). Кроме того, ориентировочный рефлекс связан с активирующей и тормозной функцией нейронов гиппокампа и хвостатого ядра, которые являются важным аппаратом регуляции тонических состояний коры мозга.

Установлено, что кора головного мозга наряду со специфическим функциональным вкладом оказывает «неспецифические» активирующие и тормозные влияния на нижележащие нервные образования. Корковые влияния, поступающие по нисходящим волокнам, представляют достаточно дифференцированную организацию и могут рассматриваться в качестве дополнительного третьего источника активации . Специфические пучки этих волокон, селективно меняющих возбудимость сенсорных и двигательных аппаратов, исходят из первичных и вторичных зон коры. Из лобных отделов коры (источник произвольной активации) исходят наиболее обширные активирующие и инактивирующие избирательные влияния, проецирующиеся на стволовой отдел мозга. Эти нисходящие волокна, проводящие корковую избирательную импульсацию к различным образованиям ствола, по мнению А.Р. Лурии , являются тем аппаратом, посредством которого высшие отделы коры непосредственно участвуют в формировании замыслов и программ поведения человека; с их помощью нижележащие модулирующие аппараты таламического и стволового отдела тоже вовлекаются в реализацию этих процессов, и таким образом обеспечивается достаточный уровень активности для осуществления сложных форм высшей нервной (психической) деятельности.

На основании многочисленных исследований с определенной точностью установлено функциональное значение различных областей коры полушарий большого мозга.

Участки коры полушарий, имеющие характерную цитоархитектонику, и нервные связи, участвующие в выполнении определенных функций, являются нервными центрами. Поражение таких участков коры проявляется в утрате присущих им функций. Нервные центры коры полушарий большого мозга могут быть разделены на проекционные и ассоциативные.

Проекционные центры – это участки коры полушарий большого мозга, представляющие собой корковую часть анализатора, имеющие непосредственную морфофункциональную связь через афферентные или эфферентные проводящие пути с нейронами подкорковых центров. Они осуществляют первичную обработку поступающей сознательной афферентной информации и реализацию осознанной эфферентной информации (произвольные двигательные акты).

Ассоциативные центры – это участки коры полушарий большого мозга, не имеющие непосредственной связи с подкорковыми образованиями, а связанные временной двусторонней связью с проекционными центрами. Ассоциативные центры играют первостепенную роль в осуществлении высшей нервной деятельности (глубокая обработка сознательной афферентной информации, мыслительная деятельность, память и т.д.).

В настоящее время достаточно точно выяснена динамическая локализация некоторых функций коры полушарий большого мозга.

Участки коры полушарий большого мозга, не являющиеся проекционными или ассоциативными центрами, участвуют в выполнении межанализаторной интегративной деятельности головного мозга.

Проекционные нервные центры коры полушарий большого мозга развиваются как у человека, так и у высших позвоночных животных. Они начинают функционировать сразу же после рождения. Формирование этих центров завершается гораздо раньше, чем ассоциативных. В практическом отношении важными являются следующие проекционные центры.

1. Проекционный центр общей чувствительности (тактильной, болевой, температурной и сознательной проприоцептивной) также называют кожным анализатором общей чувствительности. Он локализуется в коре постцентральной извилины (поля 1, 2, 3). В нем заканчиваются волокна, идущие в составе таламо-коркового пути. Каждый участок противоположной половины тела имеет отчетливую проекцию в корковом конце кожного анализатора (соматотопическая проекция). В верхнем отделе постцентральной извилины проецируются нижняя конечность и туловище, в среднем – верхняя конечность и в нижнем – голова (сенсорный гомункулюс Пенфилда). Размеры проекционных зон соматосенсорной коры прямо пропорциональны количеству рецепторов, находящихся в кожных покровах. Этим объясняется наличие наиболее крупных соматосенсорных зон, соответствующих лицу и кисти (рис. 3.25). Поражение постцентральной извилины вызывает утрату тактильной, болевой, температурной чувствительности и мышечно-суставного чувства на противоположной половине тела.

Рис. 3.25.

  • 1 – половые органы; 2 – стопа; 3 – бедро; 4 – туловище; 5 – кисть; 6 – указательный и большой пальцы кисти; 7 – лицо; 8 – зубы; 9 – язык; 10 – глотка и внутренние органы
  • 2. Проекционный центр двигательных функций (кинестетический центр), или двигательный анализатор, располагается в двигательной области коры, включающей пред- центральиую извилину и околоцентральную дольку (поля 4, 6). В 3–4-м слоях коры двигательного анализатора заканчиваются волокна, идущие в составе таламо-коркового пути.

Здесь осуществляется анализ проприоцептивных (кинестетических) раздражений. В пятом слое коры располагается ядро двигательного анализатора, от нейроцитов которого берут начало корково-спинномозговой и корково-ядерный пути. В предцентральной извилине также имеется четкая соматотопическая локализация двигательных функций. Мышцы, выполняющие сложные и тонко дифференцированные движения, имеют большую проекционную зону в коре предцентральной извилины. Наибольшую площадь занимает проекция мышц языка, лица и кисти, наименьшую – проекция мышц туловища и нижних конечностей. Соматотопическая проекция на предцентральную извилину носит название "моторный гомункулюс Пенфилда". Тело человека проецируется на извилине "вверх ногами", причем проекция осуществляется на кору противоположного полушария (рис. 3.26).

Афферентные волокна, заканчивающиеся в чувствительных слоях коры кинестетического центра, первоначально проходят в составе путей Голля, Бурдаха и ядерно-таламического тракта, проводящих импульсы сознательной проприоцептивной чувствительности. Поражение предцентральной извилины приводит к нарушению восприятия раздражений от скелетных мышц, связок, суставов и надкостницы. Корково-спинномозговой и корково-ядерный пути проводят импульсы, обеспечивающие сознательные движения, и оказывают тормозное воздействие на сегментарный аппарат ствола головного и спинного мозга. Корковый центр двигательного анализатора через систему ассоциативных волокон имеет многочисленные связи с различными корковыми сенсорными центрами (центром общей чувствительности, центром зрения, слуха, вестибулярных функций и т.д.). Указанные связи необходимы для выполнения интегративных функций при выполнении произвольных движений.

3. Проекционный центр схемы тела располагается в области внутритеменной борозды (поле 40s). В нем представлены соматотопические проекции всех частей тела. В центр схемы тела поступают импульсы преимущественно сознательной проприоцептивной чувствительности. Основное функциональное назначение данного проекционного центра – определение положения тела и отдельных его частей в пространстве и оценка тонуса мускулатуры. При поражении верхней теменной дольки наблюдается нарушение таких функций, как узнавание частей собственного тела, ощущение лишних конечностей, нарушения определения положения отдельных частей тела в пространстве.

Рис. 3.26.

  • 1 – стопа; 2 – голень; 3 – колено; 4 – бедро; 5 – туловище; 6 – кисть; 7 – большой палец кисти; 8 – шея; 9 – лицо; 10 – губы; 11 – язык; 12 – гортань
  • 4. Проекционный центр слуха, или ядро слухового анализатора, располагается в средней трети верхней височной извилины (поле 22). В этом центре заканчиваются волокна слухового пути, происходящие от нейронов медиального коленчатого тела (подкорковый центр слуха) своей и, преимущественно, противоположной сторон. В конечном счете волокна слухового пути проходят в составе слуховой лучистости.

При поражении проекционного центра слуха с одной стороны отмечается понижение слуха на оба уха, причем с противоположной стороны от очага поражения слух снижается в большей степени. Полная глухота наблюдается только при двустороннем поражении проекционных центров слуха.

5. Проекционный центр зрения, или ядро зрительного анализатора, локализуется на медиальной поверхности затылочной доли, по краям шпорной борозды (поле 17). В нем заканчиваются волокна зрительного пути со своей и противоположной сторон, происходящие от нейронов латерального коленчатого тела (подкорковый центр зрения). На шпорную борозду имеется определенная соматотопическая проекция различных участков сетчатки.

Одностороннее поражение проекционного центра зрения сопровождается частичной слепотой на оба глаза, но в различных участках сетчатки. Полная слепота наступает только при двустороннем поражении.

  • 6. Проекционный центр обоняния, или ядро обонятельного анализатора, располагается на медиальной поверхности височной доли в коре парагиппокампальной извилины и в крючке. Здесь заканчиваются волокна обонятельного пути со своей и противоположной сторон, происходящие от нейронов обонятельного треугольника. При одностороннем поражении проекционного центра обоняния отмечаются снижение обоняния и обонятельные галлюцинации.
  • 7. Проекционный центр вкуса, или ядро вкусового анализатора, располагается там же, где и проекционный центр обоняния, т.е. в лимбической области мозга (крючок и парагиппокампальная извилина). В проекционном центре вкуса заканчиваются волокна вкусового пути своей и противоположной сторон, происходящие от нейронов базальных ядер таламуса. При поражении лимбической области наблюдаются расстройства вкуса, обоняния, нередко появляются соответствующие галлюцинации.
  • 8. Проекционный центр чувствительности от внутренних органов, или анализатор висцероцепции, располагается в нижней трети постцентральной и предцентральной извилин (поле 43). В корковую часть анализатора висцероцепции поступают афферентные импульсы от гладкой мускулатуры и слизистых оболочек внутренних органов. В коре данной области заканчиваются волокна интероцептивного пути, происходящие от нейронов вентролатеральных ядер таламуса, в которые информация поступает по ядерно-таламическому тракту. В проекционном центре висцероцепции анализируются главным образом болевые ощущения от внутренних органов и афферентные импульсы от гладкой мускулатуры.
  • 9. Проекционный центр вестибулярных функций, несомненно, имеет свое представительство в коре полушарий большого мозга, однако сведения о его локализации неоднозначны. Принято считать, что проекционный центр вестибулярных функций располагается в области средней и нижней височных извилин (поля 20, 21). Определенное отношение к вестибулярному анализатору имеют также прилежащие отделы теменной и лобной долей. В коре проекционного центра вестибулярных функций заканчиваются волокна, происходящие от нейронов срединных ядер таламуса. Поражения указанных корковых центров проявляются спонтанным головокружением, ощущением неустойчивости, чувством проваливания, ощущением движения окружающих предметов и деформации их контуров.

Завершая рассмотрение проекционных центров, следует отметить, что корковые анализаторы общей чувствительности получают афферентную информацию с противоположной стороны тела, поэтому поражение центров сопровождается расстройствами определенных видов чувствительности только на противоположной стороне тела. Корковые анализаторы специальных видов чувствительности (слуховой, зрительной, обонятельной, вкусовой, вестибулярной) связаны с рецепторами соответствующих органов своей и противоположной сторон, поэтому полное выпадение функций данных анализаторов наблюдается только при поражении соответствующих зон коры полушарий большого мозга с обеих сторон.

Ассоциативные нервные центры. Эти центры формируются позже, чем проекционные, причем сроки кортикализации, т.е. созревания коры головного мозга, в данных центрах неодинаковы. Ассоциативные центры отвечают за мыслительные процессы, память и реализацию словесной функции.

  • 1. Ассоциативный центр "стереогнозии ", или ядро кожного анализатора (центр узнавания предметов на ощупь). Этот центр располагается в верхней теменной дольке (поле 7). Он двусторонний: в правом полушарии – для левой кисти, в левом – для правой. Центр "стереогнозии" связан с проекционным центром общей чувствительности (постцентральная извилина), из которого нервные волокна проводят импульсы болевой, температурной, тактильной и проприоцептивной чувствительности. Поступающие импульсы в ассоциативном корковом центре анализируются и синтезируются, в результате чего происходит узнавание ранее встречавшихся предметов. На протяжении всей жизни центр "стереогнозии" постоянно развивается и совершенствуется. При поражении верхней теменной дольки больные теряют способность с закрытыми глазами создавать общее целостное представление о предмете, т.е. не могут узнать этот предмет на ощупь. Отдельные свойства предметов, такие как форма, объем, температура, плотность, масса, определяются правильно.
  • 2. Ассоциативный центр "праксии", или анализатор целенаправленных привычных движений. Данный центр располагается в нижней теменной дольке в коре надкраевой извилины (поле 40), у правшей – в левом полушарии большого мозга, у левшей – в правом. У некоторых людей центр "праксии" формируется в обоих полушариях, такие люди в одинаковой мере владеют правой и левой руками и называются амбидекстрами.

Центр "праксии" развивается в результате многократного повторения сложных целенаправленных действий. В результате закрепления временных связей формируются привычные навыки, например работа на пишущей машинке, игра на рояле, выполнение хирургических манипуляций и т.д. По мере накопления жизненного опыта центр праксии постоянно совершенствуется. Кора в области надкраевой извилины имеет связи с задней и передней центральными извилинами.

После осуществления синтетической и аналитической деятельности из центра "праксии" информация поступает в прецентральную извилину к пирамидным нейронам, откуда по корково-спинномозговому пути достигает двигательных ядер передних рогов спинного мозга.

3. Ассоциативный центр зрения, или анализатор зрительной памяти, располагается на верхнелатеральной поверхности затылочной доли (поля 18–19), у правшей – в левом полушарии, у левшей – в правом. В нем обеспечивается запоминание предметов по их форме, внешнему виду, цвету. Считают, что нейроны поля 18 обеспечивают зрительную память, а нейроны поля 19 – ориентацию в непривычной обстановке. Поля 18 и 19 имеют многочисленные ассоциативные связи с другими корковыми центрами, благодаря чему происходит интегративное зрительное восприятие.

При поражении центра зрительной памяти развивается зрительная агнозия. Чаще наблюдается частичная агнозия (нс узнает знакомых, свой дом, себя в зеркале). При поражении поля 19 отмечается искаженное восприятие предметов, больной не узнает знакомых предметов, но он их видит, обходит препятствия.

Нервной системе человека присущи специфические центры. Это центры второй сигнальной системы, обеспечивающие способность общения между людьми посредством членораздельной человеческой речи. Человеческая речь может воспроизводиться в виде исполнения членораздельных звуков ("артикуляция") и изображения письменных знаков ("графика"). Соответственно в коре головного мозга формируются ассоциативные речевые центры – акустический и оптический центры речи, центр артикуляции и графический центр речи. Названные ассоциативные речевые центры закладываются вблизи соответствующих проекционных центров. Они развиваются в определенной последовательности, начиная с первых месяцев после рождения, и могут совершенствоваться до глубокой старости. Рассмотрим ассоциативные речевые центры в порядке их формирования в головном мозге.

4. Ассоциативный центр слуха, или акустический центр речи (центр Вернике), расположен в коре задней трети верхней височной извилины. Здесь заканчиваются нервные волокна, происходящие от нейронов проекционного центра слуха (средняя треть верхней височной извилины). Ассоциативный центр слуха начинает формироваться на втором-третьем месяце после рождения. По мере формирования центра ребенок начинает различать среди окружающих звуков членораздельную речь, вначале отдельные слова, а затем словосочетания и сложные предложения.

При поражении центра Вернике у больных развивается сенсорная афазия. Она проявляется в виде утраты способности понимать свою и чужую речь, хотя больной хорошо слышит, реагирует на звуки, по ему кажется, что окружающие разговаривают на незнакомом ему языке. Отсутствие слухового контроля за собственной речью приводит к нарушению построения предложений, речь становится непонятной, насыщенной бессмысленными словами и звуками. При поражении центра Вернике, поскольку он имеет прямое отношение к речеобразованию, страдает не только понимание слов, но и их произношение.

5. Ассоциативный двигательный центр речи (речедвигательный), или центр артикуляции речи (центр Брока), расположен в коре задней трети нижней лобной извилины (поле 44) в непосредственной близости от проекционного центра двигательных функций (предцентральная извилина). Речедвигательный центр начинает формироваться на третьем месяце после рождения. Он односторонний – у правшей он развивается в левом полушарии, у левшей – в правом. Информация из речедвигательного центра поступает в предцентральную извилину и далее по корково-ядерному пути – к мышцам языка, гортани, глотки, мышцам головы и шеи.

При поражении речедвигательного центра возникает моторная афазия (утрата речи). При частичном поражении речь может быть замедлена, затруднена, скандирована, бессвязна, нередко характеризуется лишь отдельными звуками. Речь окружающих больные понимают.

6. Ассоциативный оптический центр речи, или зрительный анализатор письменной речи (центр лексии, или центр Дежерина), находится в угловой извилине (поле 39). К нейронам оптического центра речи поступают зрительные импульсы от нейронов проекционного центра зрения (поля 17). В центре "лексии" происходит анализ зрительной информации о буквах, цифрах, знаках, буквенном составе слов и понимании их смысла. Центр формируется с трехлетнего возраста, когда ребенок начинает узнавать буквы, цифры и оценивать их звуковое значение.

При поражении центра "лексии" наступает алексия (расстройство чтения). Больной видит буквы, но не понимает их смысла и, следовательно, не может прочесть текст.

7. Ассоциативный центр письменных знаков, или двигательный анализатор письменных знаков (центр графин), располагается в заднем отделе средней лобной извилины (поле 8) рядом с предцентральной извилиной. Центр "графин" начинает формироваться на пятом-шестом году жизни. В этот центр поступает информация из центра "праксии", предназначенная для обеспечения тонких, точных движений руки, необходимых для написания букв, цифр, для рисования. От нейронов центра "графин" аксоны направляются в среднюю часть предцентральной извилины. После переключения информация по корково-спинномозговому пути направляется к мышцам верхней конечности. При поражении центра "графин" теряется способность написания отдельных букв, возникает "аграфия".

Таким образом, речевые центры имеют одностороннюю локализацию в коре полушарий большого мозга. У правшей они располагаются в левом полушарии, у левшей – в правом. Следует отметить, что ассоциативные речевые центры развиваются на протяжении всей жизни.

8. Ассоциативный центр сочетанного поворота головы и глаз (кортикальный центр взора) располагается в средней лобной извилине (поле 9) кпереди от двигательного анализатора письменных знаков (центр графин). Он осуществляет регуляцию сочетанного поворота головы и глаз в противоположную сторону за счет импульсов, поступающих в проекционный центр двигательных функций (предцентральная извилина) от проприоцепторов мышц глазных яблок. Кроме того, в этот центр поступают импульсы от проекционного центра зрения (кора в области шпорной борозды – поле 17), происходящие от нейронов сетчатки глаза.

Сенсорные системы (анализаторы) мозга.

Сенсорной системой (анализатором, по И. П. Павлову) называют часть НС, состоящую из воспринимающих элементов - сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию. Таким образом, сенсорная система вводит информацию в мозг и анализирует ее.

Сенсорная система выполняет следующие основные функции , или операции, с сигналами : 1) обнаружение; 2) различение; 3) передачу и преобразование; 4) кодирование; 5) детектирование признаков; 6) опознание образов. Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов - нейронами коры больших полушарий.

У человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, термо-, проприо- и вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и рецепторы боли.

По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные - возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на фоторецепторы, механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы; хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); болевые рецепторы.

Все рецепторы делятся на первично-чувствующие и вторично-чувствующие . К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы. К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая импульсы. Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

Передача и преобразование сигналов . Процессы преобразования и передачи сигналов в сенсорной системе доносят до высших центров мозга наиболее важную (существенную) информацию о раздражителе в форме, удобной для его надежного и быстрого анализа.

Ограничение избыточности информации и выделение существенных признаков сигналов . Зрительная информация, идущая от фоторецепторов, могла бы очень быстро насытить все информационные резервы мозга. Избыточность сенсорных сообщений ограничивается путем подавления информации о менее существенных сигналах.

Кодирование информации . Кодированием называют совершаемое по определенным правилам преобразование информации в условную форму - код. В сенсорной системе сигналы кодируются двоичным кодом, т. е. наличием или отсутствием электрического импульса в тот или иной момент времени.

Опознание образов. Это конечная и наиболее сложная операция сенсорной системы. Она заключается в отнесении образа к тому или иному классу объектов, с которыми ранее встречался организм, т. е. в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В результате этого происходит восприятие, т. е. мы осознаем, чье лицо видим перед собой, кого слышим, какой запах чувствуем.

H.H. Данилова:

Первый функциональный блок составляют анализаторы, или сенсорные системы. Анализаторы выполняют функцию приема и переработки сигналов внешней и внутренней среды организма. Каждый анализатор настроен на определенную модальность сигнала и обеспечивает описание всей совокупности признаков воспринимаемых раздражителей. Модальная специфичность анализатора в первую очередь определяется особенностями функционирования его периферических образований и специфичностью рецепторных элементов. Однако в значительной степени она связана с особенностями структурной организации центральных отделов анализатора, упорядоченностью межнейронных связей всех морфологических образований от рецепторного уровня до коркового конца (проекционных зон).

Анализатор - это многоуровневая система с иерархическим принципом ее конструкции. Основанием анализатора служит рецепторная поверхность, а вершиной - проекционные зоны коры. Каждый уровень этой морфологически упорядоченно организованной конструкции представляет собой совокупность клеток, аксоны которых идут на следующий уровень (исключение составляет верхний уровень, аксоны которого выходят за пределы данного анализатора). Взаимоотношения между последовательными уровнями анализаторов построены по принципу «дивергенции- конвергенции». Чем выше нейронный уровень анализаторной системы, тем большее число нейронов он включает. На всех уровнях анализатора сохраняется принцип топической проекции рецепторов. Принцип многократной рецептотопической проекции способствует осуществлению множественной и параллельной переработки (анализу и синтезу) рецепторных потенциалов («узоров возбуждений»), возникающих под действием раздражителей.

Уже в функциональной организации клеточного аппарата рецепторного уровня анализаторов выявились существенные черты их приспособления к адекватному отражению действующих раздражителей (специфичность рецепторов по фото-, термо-, хемо- и другим видам «энергии»). Известный закон Фехнера о логарифмическом отношении силы раздражителя и интенсивности ощущения получил объяснение в частотных характеристиках разряда рецепторных элементов. Обнаруженный в 1958 г. Ф. Ратлиффом эффект латерального торможения в глазе мечехвоста объяснил способ контрастирования изображения, улучшающий возможности предметного зрения (детекции формы). Механизм латерального торможения выступил как универсальный способ формирования селективных каналов передачи информации в центральной нервной системе. Он обеспечивает центральным нейронам анализаторов избирательную настройку их рецептивного поля на определенные свойства раздражителя. Нейрон, стоящий на выходе рецептивного поля, может выделять один признак раздражителя (простые детекторы) или комплекс его свойств (сложные детекторы). Детекторные свойства нейрона обусловливаются структурной организацией его рецептивного поля. Нейроны-детекторы более высокого порядка образуются в результате конвергенции нейронов-детекторов низшего (более элементарного) уровня. Нейроны-детекторы сложных свойств формируют детекторы «сверхсложных» комплексов. Высший уровень иерархической организации детекторов достигается в проекционных зонах и ассоциативных областях коры мозга .

Проекционные зоны анализаторных систем занимают наружную (конвекситальную) поверхность новой коры задних отделов мозга. Сюда входят зрительная (затылочная), слуховая (височная) и общечувствительная (теменная) области коры. В корковый отдел этого функционального блока включается также представительство вкусовой, обонятельной, висцеральной чувствительности. При этом наиболее обширные области в коре занимает та сенсорная система, которая имеет наибольшее экологическое значение для данного вида.

Первичные проекционные зоны коры состоят главным образом из нейронов 4-го афферентного слоя, для которых характерна четкая топическая организация. Значительная часть этих нейронов обладает высочайшей специфичностью. Так, например, нейроны зрительных областей избирательно реагируют на определенные признаки зрительных раздражителей: одни - на оттенки цвета, другие - на направление движения, третьи - на характер линий (край, полоса, наклон линии) и т. п. Однако следует отметить, что в первичные зоны отдельных областей коры включены также нейроны мультимодального типа, реагирующие на несколько видов раздражителей. Кроме того, там же имеются нейроны, реакция которых отражает воздействие неспецифических (лимбико-ретикулярных или модулирующих) систем.

Вторичные проекционные зоны коры располагаются вокруг первичных зон, как бы надстраиваясь над ними. В этих зонах 4-й афферентный слой уступает ведущее место 2-му и 3-му слоям клеток. Для этих нейронов характерно детектирование сложных признаков раздражителей, однако при этом сохраняется модальная специфичность, соответствующая нейронам первичных зон. Поэтому предполагается, что усложнение детекторных селективных свойств нейронов вторичных зон может происходить путем конвергенции на них нейронов первичных зон. В первичной зрительной коре (17-е поле Бродмана) содержатся в основном нейроны-детекторы простых признаков предметного зрения (детекторы ориентации линий, полосы, контраста и т. п.), а во вторичных зонах (18-е и 19-е поля Бродмана) появляются детекторы более сложных элементов контура: края, ограниченной длины линий, углов с различной ориентацией и др. . Первичные (проекционные) зоны слуховой (височной) коры представлены 41-м полем Бродмана (рис. 4), нейроны которого модально специфичны и реагируют на различные свойства звуковых раздражителей. Как и первичное зрительное поле, эти первичные отделы слуховой коры имеют четкую рецептотопию. Над аппаратами первичной слуховой коры надстроены вторичные зоны слуховой коры, расположенные во внешних отделах височной области (22-е и частично 21-е поля Бродмана). Они также состоят преимущественно из мощно развитого 2-го и 3-го слоя клеток, реагирующих избирательно одновременно на несколько частот и интенсивностей: звукового раздражителя.

Наконец, тот же принцип функциональной организации сохраняется и в общечувствительной (теменной) коре. Основой и здесь являются первичные или проекционные зоны (3-, 1- и 2-е поля Бродмана), толща которых также преимущественно состоит из обладающих модальной специфичностью нейронов 4-го слоя, а топография отличается четкой соматотопической проекцией отдельных сегментов тела. Вследствие чего раздражение верхних участков этой зоны вызывает появление кожных ощущений в нижних конечностях, средних участков - в верхних конечностях контрлатеральной стороны, а раздражение пунктов нижнего пояса этой зоны - соответствующие ощущения в контрлатеральных отделах лица, губ и языка. Над первичными зонами располагаются вторичные зоны общечувствительной (теменной) коры (5-е и частично 40-е поле Бродмана), состоящие преимущественно тоже из нейронов 2-го и 3-го слоев, и их раздражение приводит к возникновению более комплексных форм кожной и кинестетической чувствительности (см. рис. 4).

Таким образом, основные, модально-специфические зоны анализаторов мозга построены по единому принципу иерархической структурной и функциональной организации. Первичные и вторичные зоны, согласно И.П. Павлову, составляют центральную часть, или ядро, анализатора в коре, нейроны которого характеризуются избирательной настройкой на определенный набор параметров раздражителя и обеспечивают механизмы тонкого анализа и дифференцировки раздражителей. Взаимодействие первичных и вторичных зон носит сложный, неоднозначный характер и в условиях нормальной деятельности обусловливает согласованное содружество процессов возбуждения и торможения, которое закрепляет макро- и микроструктуру нервной сети, занятой анализом афферентного потока в первичных проекционных сенсорных полях. Это создает основу для динамического межанализаторного взаимодействия, осуществляемого в ассоциативных зонах коры.

Ассоциативные области (третичные зоны) коры являются новым уровнем интеграции: они занимают 2-й и 3-й клеточные (ассоциативные) слои коры, на которых протекает встреча мощных афферентных потоков, как одномодальных, разномодальных, так и неспецифических. Подавляющее большинство ассоциативных нейронов отвечает на обобщенные признаки стимулов - на количество элементов, пространственное положение, отношения между элементами и пр.

Конвергенция разномодальной информации необходима для целостного восприятия, для формирования «сенсорной модели мира», которая возникает в результате сенсорного обучения.

Ассоциативные зоны расположены на границе затылочной, височной и заднетеменной коры. Основную их часть составляют образования нижнетеменной корковой области, которая у человека развилась настолько, что составляет едва ли не четвертую часть всех образований описываемого сенсорного блока мозга. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки /избирательного различения) воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации - для оперирования значениями слов и использования их для отвлеченного мышления, т.е. для того синтетического характера восприятия, о котором писал в свое время И.М. Сеченов.

Клинические наблюдения различных очаговых поражений третичных зон мозга человека накопили большой материал о взаимосвязи ассоциативных областей с различными функциональными расстройствами. Известно, что поражения лобно-височно-теменной области, так называемых речевых зон (имеется в виду левое полушарие), связаны с возникновением афазии (расстройства речи). При поражении нижневисочной области наблюдают предметную агнозию (нарушение процесса узнавания), теменных областей или угловой извилины теменной доли - развитие оптико-пространетвенной агнозии, при поражении левой височной доли обнаруживается цветовая агнозия и т. д. Следует отметить, что локальные поражения ассоциативных зон коры могут быть связаны как с относительно элементарными сенсорными расстройствами, так и с нарушениями сложных форм восприятия.

У высших животных механизмы, выделяющие элементарные признаки раздражителей, составляют лишь начальное звено в механизме восприятия и дифференцировки стимулов (специфические ядра таламуса и первичные зоны коры). В высших сенсорных (вторичных и ассоциативных) зонах коры выступает закон убывающей специфичности, который является обратной стороной принципа иерархической организации нейронов-детекторов в специфической подкорке и проекционных зонах коры. В нем отражается переход от дробного анализа частных модально-специфических признаков раздражителя к синтезу более общих «схем» воспринимаемого. Закономерным является и то, что, несмотря на убывающую специфичность высших сенсорных полей коры (преобладание мультимодальных и ассоциативных нейронов), они являются в функциональном отношении более совершенными образованиями. Они выполняют функцию интеграции сложных комплексных раздражителей, им свойственна пластичность, они подвержены «неспецифической» активации со стороны модулирующих систем (ретикулярной формации, «центров» актуализированных потребностей и пр.).

Механизмы различения фигур и их пространственной организации у обезьян связывают с ассоциативными зонами (височной и заднетеменной) коры мозга. Известно, что обезьяны легко обучаются различению фигур по форме, размеру и их пространственной ориентации. После экстирпации нижневисочной коры обезьяна испытывает затруднения в различении фигур по их форме, но легко обучается дифференцировать их по размеру и ориентации. В то время как удаление затылочно-теменной зоны коры приводит к нарушению механизма пространственной дифференцировки фигур по отношению к телу, а также нарушению различения положения и перемещения собственного тела по отношению к окружающим предметам. Данные о физиологической роли височной и заднетеменной коры пока малочисленны. Так, для выяснения специфической функции нижневисочной коры и ее нейронной организации были проведены микроэлектродные исследования на обезьянах с использованием сложной стимульной программы: квадрат и круг сопровождались двигательным обучением, а крест и треугольник использовались в качестве незначащих стимулов. В результате исследований выделены три группы клеток: одни нейроны реагировали избирательно только на одну из четырех использовавшихся фигур, другие нейроны отвечали на две фигуры, третьи - на все четыре (без дифференцировки значимости стимула). Из экспериментов следовало, что эти нейроны выделяют сложные признаки зрительного изображения независимо от моторного обучения, при этом одни из них реагируют на появление соответствующего ему сенсорного стимула, другие отвечают лишь тогда, когда стимул сопровождается актом внимания. Нейроны пластичны, их специфическая реакция на сенсорный «образ» не связана с двигательным обучением и может меняться лишь в результате сенсорного обучения. Следует отметить, что свойства этих нейронов хорошо согласуются с поведенческими и клиническими данными о роли нижневисочной коры в процессах формирования сложных образов . Следуя высказанной в 1949 г. гипотезе Д. Хебба, можно предположить, что отдельные нейроны ассоциативных зон коры связаны разнообразными путями и образуют клеточные ансамбли, выделяющие «подобразы», т.е. соответствующие унитарным формам восприятия. Эти связи, как отмечал Д. Хебб, настолько хорошо развиты, что достаточно активировать один нейрон, как возбуждается весь ансамбль. Позднее Ю. Конорский , опираясь на ставшие классическими данные Д. Хьюбела и Т. Визеля о корковых нейронах с «простыми», «сложными» и «сверхсложными» рецептивными полями и детектирующими все более сложные признаки зрительного стимула, выдвинул концепцию о «гностических нейронах». Он предположил, что унитарному восприятию (т. е. узнаванию знакомого лица с первого взгляда, знакомого голоса, знакомого запаха, характерного жеста и др.) соответствуют не ансамбли совозбужденных нейронов, а единичные нейроны - «гностические нейроны», интегрирующие возбуждение при действии сложных комплексных раздражителей. Гностические нейроны составляют главную деятельную основу высших уровней анализаторов, вследствие чего высшие уровни анализаторов представляют, по мнению Ю. Конорского, «гностические зоны». Гностическую зону можно рассматривать как своеобразную картотеку гностических нейронов, в которой представлены все унитарные «подобразы», сформировавшиеся у данного индивидуума в процессе сенсорного обучения.

Для концепции гностических нейронов первое время не было экспериментальных доказательств. Основой для предположений Ю. Конорского служили главным образом клинические данные. Однако вскоре стали появляться работы, из которых следовало, что « гностические нейроны », избирательно реагирующие на сложные комплексы раздражителей, существуют. В лобных долях мозга кошки были обнаружены клетки, которые избирательно реагируют на появление в поле зрения сложного зрительного стимула. У говорящих птиц существуют нейроны, избирательные к гласным звукам человеческой речи. Наконец, с 1980-х годов стали появляться серии работ по исследованию височных отделов коры мозга обезьян. В верхневисочной извилине были обнаружены нейроны, выделяющие определенные черты лица. По гностическим свойствам нейроны верхневисочной извилины отличались друг от друга. Одни нейроны отвечали только при фиксации внимания на интересующем обезьяну объекте, другие - при свободном блуждании взора, если стимул попадал на сетчатку. Одни нейроны давали максимальную реакцию на изображения лица человека в фас, другие - в профиль, третьи - на часть лица (верхнюю или нижнюю). При этом большинство нейронов реагирует на трехмерное изображение лица, а не на двумерное. Одни нейроны реагируют на лицо конкретного индивида, другие - на любое лицо независимо от индивидуальных черт. Большая часть Нейронов верхневисочной извилины оказалась специфичной к живому конкретному лицу (человека или обезьяны). Формирование механизма избирательности в височной коре обезьяны происходит под влиянием индивидуального опыта, поскольку отмечается зависимость селективных свойств нейронов от круга лиц (животных и экспериментаторов), с которыми обезьяна была в общении до экспериментов. Данные нейронных исследований на обезьянах по восприятию изображений лица согласуются с результатами наблюдения больных с прозопагнозией (нарушением узнавания лиц), которые также свидетельствуют о наличии в области височных отделов коры мозга специального механизма по распознаванию лиц .

Известно, что система нейронов, детектирующих сложные сенсорные стимулы (гностические единицы), формируется на базе врожденной (генетически детерминированной) системы корковых нейронов с «жесткими» связями и большим резервом «лабильных», пластичных связей. В определенный критический (сенситивный) период онтогенетического развития и созревания межнейронных связей важным является функциональное задействование этих потенциальных связей. Их актуализация осуществляется под воздействием внешней стимуляции (индивидуального сенсорного опыта) . В процесс приобретения индивидуального опыта дополнительный вклад вносит модулирующая система, оказывающая «неспецифическое» активирующее воздействие на соответствующий анализатор. Активирующее воздействие достигается через ориентировочно-исследовательский рефлекс или внимание. Этот процесс активации, по мнению Ю. Конорского, является необходимой предпосылкой для преобразования потенциальных корковых связей в действующие, т.е. делает возможным формирование гностических нейронов, гностических зон и познавательной системы.

Модулирующие системы мозга

Блок модулирующих систем мозга регулирует тонус коры и подкорковых образований, оптимизирует уровень бодрствованияи обусловливает адекватный выбор поведения в соответствии с потребностью.

В условиях оптимальной возбудимости коры нервные процессы характеризуются концентрированностью, уравновешенностью возбуждения и торможения, способностью к дифференцировке и высокой подвижностью нервных процессов, которые обусловливают протекание организованной целенаправленности деятельности.

Аппаратом, выполняющим роль регулятора уровня бодрствования, осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции является модулирующая система мозга .Ее часто называют лимбико-ретикулярный комплекс или восходящая активирующая система.

К нервным образованиям этого аппарата относятся лимбическая и неспецифическая система мозга сее:

- активирующими структурами (ретикулярную формацию среднего мозга, задний гипоталамус, синее пятно в нижних отделах ствола мозга);

- инактивирующими структурами (преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору) .

Важнейшей частью модулирующего блока мозга является активирующая ретикулярная формация - сеть из нервных клеток, находящаяся в середине ствола мозга. Одни авторы рассматривают ретикулярную формацию как диффузное вытянутое в длину единое образование, другие считают ее комплексом, состоящим из многих дифференцированных ядер с различной структурой и функциями. Латерально (с боков) ретикулярная формация окружена сенсорными путями. Таким образом, волокна ретикулярной формации окружены слоем сенсорных путей, которые к ней образуют множество коллатералей.

Функциональное назначение ретикулярной формации . Первым указанием на нисходящие тормозные влияния ретикулярной формации явились опыты И.М. Сеченова, в которых наблюдалось угнетение рефлекторных реакций лягушки при раздражении межуточного мозга. В.М. Бехтерев обнаружил восходящие влияния ретикулярной формации на двигательную область коры , приводящие к возникновению судорожных припадков при раздражении определенных участков Варолиева моста. Исключительная роль ретикулярной формации в интегративной деятельности мозга, это открытие было сделано в 1949 г. Г. Мэгуном и Г. Моруцци. Путем стимуляции через электроды, вживленные в стволовой отдел мозга (на уровне среднего мозга), им удалось получить реакцию пробуждения спящего животного. Эту стволовую систему мозга Г. Мэгун назвал восходящей активирующей системой мозга.

Блок активации с его восходящими и нисходящими влияниями работает (по принципу обратной связи) как единый саморегулирующий аппарат, который обеспечивает изменение тонуса коры, и вместе с тем сам находится под его контролем . Этот аппарат используется для пластичного приспособления организма к условиям среды.

Загрузка...