Польза натуральных продуктов. Витамины, макроэлементы

Теоретические основы метрологии. Основные понятия и термины связанные с объектами и средствами измерений. Теоретические основы метрологии Структурно-функциональные составляющие интеллектуальных ресурсов: сравнительный анализ теоретических подходов

Цели и задачи метрологии

Измерения являются одним из важнейших путей познания природы человеком. Они дают количественную характеристику окружающего мира, раскрывая человеку действующие в природе закономерности. Все отрасли техники не могли бы существовать без развернутой системы измерений, определяющих как все технологические процессы, контроль и управление ими, гак и свойства и качество выпускаемой продукций.

Отраслью науки, изучающей измерения, является метрология. Слово "метрология" образовано из двух греческих слов: метрон – мера и логос – учение. Дословный перевод – учение о мерах.

Долгое время метрология оставалась в основном описательной наукой о различных мерах и соотношениях между ними. С конца XIX в. благодаря прогрессу естественных наук метрология получила существенное развитие. Большую роль в становлении современной метрологии как одной из наук физического цикла сыграл Д. И. Менделеев, руководивший отечественной метрологией в период 1892–1907 гг.

Метрология – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Она основывается на достижениях естественных, технических и общественных наук.

Объектами метрологии являются измерения физических величин и методы и средства обеспечения единства измерений и требуемой точности.

В современном обществе метрология играет большую роль. Это связано с тем, что практически нет ни одной сферы человеческой деятельности, где бы не использовались результаты измерений. С помощью измерений получают информацию о состоянии производственных, экономических и социальных процессов. Точность и достоверность измерений обеспечивают правильность принятия решений на всех уровнях управления. Существует большое число разнообразных величин и еще большее число единиц этих величин. Такое разнообразие создает серьезные трудности в международных торговых отношениях и обмене научной информацией.

Проведенные измерения могут быть использованы в оценочной деятельности, если они отвечают следующим условиям:

  • 1) результаты измерений выражаются в установленных (узаконенных) единицах;
  • 2) должны быть известны с необходимой заданной достоверностью показатели точности результатов измерений;
  • 3) показатели точности должны обеспечивать оптимальное в соответствии с выбранными критериями решение задачи, для которой результаты предназначены (результаты измерений получены с требуемой точностью).

Если результаты измерений удовлетворяют первым двум условиям, то о них известно все, что необходимо знать для принятия обоснованного решения о возможности их использования.

Такие результаты можно сопоставлять, они могут использоваться в различных сочетаниях, различными людьми и организациями.

В этом случае говорят, что обеспечено единство измерений, при котором их результаты выражены в узаконенных единицах, и погрешности не выходят за установленные пределы с заданной вероятностью.

Третье из перечисленных выше условий гласит, что недостаточная точность измерений приводит к увеличению ошибок контроля, к экономическим потерям, а завышенная – требует затрат на приобретение более дорогих средств измерений.

Следовательно, это не только метрологическое, но и экономическое условие, так как связано с затратами и потерями при проведении измерений, являющимися экономическими критериями.

Если соблюдаются все три условия, то говорят о метрологическом обеспечении, под которым понимается установление и применение научных и организационных основ, технических средств, правил и норм, необходимых для достижения единства и требуемой точности измерений.

Для реализации положений большинства законов РФ (например, Федеральных законов о техническом регулировании, о защите прав потребителей и др.) необходимо использование достоверной и сопоставимой информации, получаемой по результатам измерений.

Эффективное сотрудничество с другими странами, совместные разработки научно-технических программ (например, в области освоения космоса, охраны окружающей среды и т.д.), дальнейшее развитие международной торговли требуют взаимного доверия к информации по результатам измерений.

Эта информация является по существу основным объектом обмена при совместном решении научно-технических проблем, основой взаимных расчетов при торговых операциях, заключении контрактов на поставку материалов, изделий, оборудования.

Единый подход к измерениям гарантирует взаимопонимание, возможность унификации и стандартизации методов и средств измерений, взаимного признания результатов оценки соответствия продукции в международной системе товарообмена.

Основополагающая цель метрологии раскрыта в определении – обеспечение единства измерений с необходимой точностью. Результатом достижения этой цели является такое измерение, которое с достаточной достоверностью отражает количественную характеристику измеряемой величины.

Для достижения поставленной цели в метрологии решаются следующие задачи:

  • установление, применение и совершенствование эталонов единиц измерения физических величин;
  • контроль за состоянием окружающей среды;
  • контроль материально-технических ресурсов;
  • медицинское обеспечение страны;
  • обеспечение обороноспособности и безопасности;
  • разработка и совершенствование средств и методов измерения для повышения их точности;
  • дальнейшее развитие международной торговли;
  • совершенствование нормативно-правовой базы метрологической деятельности.

В своей области метрология опирается на следующие принципы, единство, единообразие и научная обоснованность измерений.

Единство измерений предполагает такое состояние измерений, при котором их результаты выражены в узаконенных единицах величин, а погрешности измерений не выходят за установленные границы с заданной вероятностью. Этот принцип достигается за счет применения единых единиц измерений, например СИ, применяемая в большинстве стран, обеспечивает единство измерений.

Единообразие измерений – это такое состояние измерений, когда они проградуированы в узаконенных единицах, а их метрологические характеристики соответствуют установленным нормам.

Научная обоснованность измерений заключается в разработке и (или) применении средств измерений, методов, методик, приемов и основывается на научном эксперименте и анализе.

Указанный принцип позволяет определять и достоверно доказывать необходимость требуемой точности измерений (класса точности) и возможность применения конкретных средств измерений и методик с учетом особенностей измеряемого объекта.

Метрология подразделяется на теоретическую, прикладную и законодательную.

Теоретическая метрология занимается вопросами фундаментальных исследований, созданием системы единиц измерений, физических постоянных, разработкой новых методов измерений.

Прикладная метрология занимается вопросами практического применения в различных сферах деятельности результатов теоретических исследований в рамках метрологии.

Законодательная метрология включает совокупность взаимообусловленных правил и норм, направленных на обеспечение единства измерений, которые возводятся в ранг правовых положений (уполномоченными на то органами государственной власти), имеют обязательную силу и находятся под контролем государства.

Слово «метрология» образовано из двух греческих слов: мет- рон - мера и логос - учение. Дословный перевод слова «метрология» - учение о мерах. Долгое время метрология оставалась в основном описательной наукой о различных мерах и соотношениях между ними. С конца прошлого века благодаря прогрессу физических наук метрология получила существенное развитие. Большую роль в становлении современной метрологии как одной из наук физического цикла сыграл Д. И. Менделеев, руководивший отечественной метрологией в период 1892-1907 гг.

Метрология в ее современном понимании - наука об измерениях, методах, средствах обеспечения их единства и способах достижения требуемой точности.

Единство измерений - такое состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности измерений известны с заданной вероятностью. Единство измерений необходимо для того, чтобы можно было сопоставить результаты измерений, выполненных в разных местах, в разное время, с использованием разных методов и средств измерений.

Точность измерений характеризуется близостью их результатов к истинному значению измеряемой величины.

Таким образом, важнейшими задачами метрологии являются усовершенствование эталонов, разработка новых методов точных измерений, обеспечение единства и необходимой точности измерений.

Классификация и основные характеристики измерений

Измерение является важнейшим понятием в метрологии. Это организованное действие человека, выполняемое для количественного познания свойств физического объекта с помощью определения опытным путем значения какой-либо физической величины .

Существует несколько видов измерений. При их классификации обычно исходят из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений, и способов выражения этих результатов.

По характеру зависимости измеряемой величины от времени измерения разделяются:

  • на статические, при которых измеряемая величина остается постоянной во времени;
  • динамические, в процессе которых измеряемая величина изменяется и является непостоянной во времени.

Статическими измерениями являются, например, измерения размеров тела, постоянного давления, динамическими - измерения пульсирующих давлений, вибраций.

По способу получения результатов измерений их разделяют:

  • на прямые;
  • косвенные;
  • совокупные;
  • совместные.

Прямые - это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой Q = X, где Q - искомое значение измеряемой величины, а X - значение, непосредственно получаемое из опытных данных.

При прямых измерениях экспериментальным операциям подвергают измеряемую величину, которую сравнивают с мерой непосредственно или же с помощью измерительных приборов, градуированных в требуемых единицах. Примерами прямых служат измерения длины тела линейкой, массы с помощью весов и др. Прямые измерения широко применяются в машиностроении, а также при контроле технологических процессов (измерение давления, температуры и др.).

Косвенные - это измерения, при которых искомую величину определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, т. е. измеряют не собственно определяемую величину, а другие, функционально с ней связанные. Значение измеряемой величины находят путем вычисления по формуле Q= F(x x , х 2 , ..., %), где Q - искомое значение косвенно измеряемой величины; F - функциональная зависимость, которая заранее известна, х 1 ,х 2 ,..., x N - значения величин, измеренных прямым способом.

Примеры косвенных измерений: определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения.

Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат. Роль их особенно велика при измерении величин, недоступных непосредственному экспериментальному сравнению, например размеров астрономического или внутриатомного порядка.

Совокупные - это производимые одновременно измерения нескольких одноименных величин, при которых искомую определяют решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.

Примером совокупных измерений является определение массы отдельных гирь набора (калибровка по известной массе одной из них и по результатам прямых сравнений масс различных сочетаний гирь).

Совместные - это производимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимостей между ними.

В качестве примера можно назвать измерение электрического сопротивления при 20 °С и температурных коэффициентов измерительного резистора по данным прямых измерений его сопротивления при различных температурах.

По условиям, определяющим точность результата, измерения делятся на три класса.

1. Измерения максимально возможной точности, достижимой при существующем уровне техники.

К ним относятся в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин, и, кроме того, измерения физических констант, прежде всего универсальных (например, абсолютного значения ускорения свободного падения, гиромагнитного отношения протона и др.).

К этому же классу относятся и некоторые специальные измерения, требующие высокой точности.

2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения.

К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники и заводскими измерительными лабораториями, которые гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого заранее заданного значения.

3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений.

Примерами технических измерений являются измерения, выполняемые в процессе производства на машиностроительных предприятиях, на щитах распределительных устройств электрических станций и др.

По способу выражения результатов измерений различают абсолютные и относительные измерения.

Абсолютными называются измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант.

Примером абсолютных измерений может служить определение длины в метрах, силы электрического тока в амперах, ускорения свободного падения в метрах на секунду в квадрате.

Относительными называются измерения отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принимаемой за исходную.

В качестве примера относительных измерений можно привести измерение относительной влажности воздуха, определяемой как отношение количества водяных паров в 1 м 3 воздуха к количеству водяных паров, которое насыщает 1 м 3 воздуха при данной температуре.

Основными характеристиками измерений являются: принцип измерений, метод измерений, погрешность, точность, правильность и достоверность.

Принцип измерений - физическое явление или совокупность физических явлений, положенных в основу измерений. Например, измерение массы тела с помощью взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта.

Метод измерений - совокупность приемов использования принципов и средств измерений. Средствами измерений являются используемые технические средства, имеющие нормированные метрологические свойства.

Погрешность измерений - разность между полученным при измерении X" и истинным Q значениями измеряемой величины:

Погрешность вызывается несовершенством методов и средств измерений, непостоянством условий наблюдения, а также недостаточным опытом наблюдателя или особенностями его органов чувств.

Точность измерений - это характеристика измерений, отражающая близость их результатов к истинному значению измеряемой величины.

Количественно точность можно выразить величиной, обратной модулю относительной погрешности:

Например, если погрешность измерений равна КГ 4 , то точность равна 10 4 .

Правильность измерения определяется как качество измерения, отражающее близость к нулю систематических погрешностей результатов (т. е. таких погрешностей, которые остаются постоянными или закономерно изменяются при повторных измерениях одной и той же величины). Правильность измерений зависит, в частности, от того, насколько действительный размер единицы, в которой выполнено измерение, отличается от ее истинного размера (по определению), т. е. от того, в какой степени были правильны (верны) средства измерений, использованные для данного вида измерений.

Важнейшей характеристикой качества измерений является их достоверность ; она характеризует доверие к результатам измерений и делит их на две категории: достоверные и недостоверные, в зависимости от того, известны или неизвестны вероятностные характеристики их отклонений от истинных значений соответствующих величин. Результаты измерений, достоверность которых неизвестна, не представляют ценности и в ряде случаев могут служить источником дезинформации.

Наличие погрешности ограничивает достоверность измерений, т. е. вносит ограничение в число достоверных значащих цифр числового значения измеряемой величины и определяет точность измерений.

Метрология - это наука об измерениях, методах и средствах обеспечения единства измерений и способах достижения требуемой точности, а также область знаний и вид деятельности, связанные с измерениями

Теоретическая метрология - это раздел метрологии, занимающийся фундаментальными исследованиями, созданием системы единиц измерений, физических постоянных, разработкой новых методов измерений

Прикладная (практическая) метрология занимается применением на практике результатов теоретических исследований в области метрологии

Законодательная метрология включает совокупность правил и норм, которые имеют ранг правовых положений и находятся под контролем государства. Эти правила и нормы обеспечивают единство измерений

Единство измерений - такое состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности измерений известны с заданной вероятностью. Единство измерений необходимо для того, чтобы можно было сопоставить результаты измерений, выполненных в разных местах, в разное время, с использованием разных методов и средств измерений

Метрологический надзор - это техническая и административная деятельность компетентных лиц и властей, целью которой является контроль соблюдения метрологических законов и правил

Человек появляется на свет, еще не имея имени, но сразу становятся известными его рост и вес. C первых минут жизни ему приходится сталкиваться с линейкой, весами, термометром. Поиск соотношения между измеряемой величиной и единицей этой величины есть измерение. Измерение не ограничено физическими количествами, измеряться могут любые вообразимые сущности, такие как степень неопределенности, доверие потребителя или скорость падения цен на бобы.

Измерения в физике и промышленности - процесс сравнения физических количеств реальных объектов и событий. Стандартные объекты и события используются как единицы сравнения, а результат сравнения представляется, по крайней мере, двумя числами, где одно число показывает отношение между измеряемой величиной и единицей сравнения, а вторым числом оценивается статистическая неопределенность, или ошибка измерения (в философском смысле). Единицей длины, например, может служить длина ступни человека (фут), а длину лодки можно выразить количеством футов. Таким образом, измерение - это сравнение со стандартом. Меры являются стандартом для измерений. Определение количественной характеристики объекта путем измерения опирается на существование явных или неявных мер. Если я говорю, что мне 20, я указываю измерение, не указывая применимый стандарт. Я могу подразумевать, что мне 20 лет. В данном случае мерой является год.

История развития измерений - это один из разделов истории науки и техники. Метр был стандартизирован как единица длины после французской революции, и принят с тех пор в большинстве стран мира. В Российской Федерации применяется метрическая система измерений. Мы привыкли к килограммам, литрам и сантиметрам. А ведь метрической системе, которой мы пользуемся, немногим более ста лет. 21 мая 1875 г. она была утверждена во Франции и явилась обязательной для всех государств. Во многих странах старинные меры веса, длины и объема используются до сих пор. Соединенные Штаты и Великобритания находятся в процессе перехода к системе СИ.

Измерение многих величин является очень трудным и неточным. Трудности могут быть связаны с неопределенностью или с ограниченным временем для измерения. Очень трудно измерить, например, знания, эмоции и ощущения человека.

Метрология занимается изучением измерений. Она пронизывает все сферы деятельности человека, отражает развитие науки и техники, взаимоотношения субъектов хозяйственной деятельности, межгосударственные взаимоотношения и в целом свидетельствует об уровне цивилизации.

Основной задачей метрологии является обеспечение единства измерений, которое всегда было важнейшей государственной функцией.

Метрология – это наука об измерениях, методах достижения их единства и требуемой точности. Слово «метрология» образовано из двух греческих слов: «метрон» – мера и «логос» – учение. Дословный перевод слова «метрология» – учение о мерах. Долгое время метрология оставалась в основном описательной наукой о различных мерах и соотношениях между ними. Измерение познавательный процесс, заключающийся в сравнении данной величины с известной величиной, принятой за единицу.

Предметом метрологии является обработка количественной информации о свойствах объектов и процессов с заданной достоверностью.

Меры на Руси: длина – аршин, сажень (3 аршина), верста; вес – пуд (16,4 кг); жидкие тела – бочки, ведра, кружки, бутылки.

В XV–XVIII вв. в связи с бурным ростом науки появилась необходимость измерения (барометры, гидрометры, манометры (давление воды), паровые машины (мощность измеряется в лошадиных силах)).

В XIX–XX вв. происходят новые физические открытия, появляется необходимость измерения в атомной и молекулярной физике. В 1827 г. в России образована комиссия образцовых мер и весов. Д.И. Менделеев сыграл большую роль в становлении метрологической службы, возглавляя ее с 1892 по1907 г. В 1970 г. образован Госстандарт СССР, в 1993 г. Госстандарт преобразован в Госстандарт России.

В современном понимании метрология – это наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. К основным направлениям метрологии относятся:

– общая теория измерений;

– единицы физических величин и их системы;

– методы и средства измерений; методы определения точности измерений;

– основы обеспечения единства измерений и единообразия средств измерения;

– эталоны и образцовые средства измерений; методы передачи размеров единиц от эталонов и образцовых средств измерений рабочим средствам измерений.

Основным законодательным документом в метрологии является Закон «Об обеспечении единства измерений», принят в 1992 г., который направлен на защиту прав и интересов граждан, экономики страны от отрицательных последствий, недостоверных результатов измерений.

Метрологию подразделяют на теоретическую, прикладную и законодательную.

Теоретическая метрология занимается вопросами фундаментальных исследований, созданием системы единиц измерений, физических постоянных, разработкой новых методов измерения.

Прикладная (практическая) метрология занимается вопросами практического применения в различных сферах деятельности результатов теоретических исследований в рамках метрологии.

Законодательная метрология включает совокупность взаимообусловленных правил и норм, направленных на обеспечение единства измерений, которые возводятся в ранг правовых положений (уполномоченными на то органами государственной власти), имеют обязательную силу и находятся под контролем государства. Ее основная задача – создание и совершенствование системы государственных стандартов, которые устанавливают правила, требования и нормы, определяющие организацию и методику проведения работ по обеспечению единства и точности измерений, а также организация и функционирование соответствующей государственной службы.


  • Современные теоретические концепции национальной безопасности
    Для наиболее полного понимания энергетической безопасности необходимо пояснить, что энергетическая безопасность входит в состав более широкого понятия национальной безопасности. Концепция национальной безопасности была осмыслена политическими и экономическими науками сравнительно недавно. Впервые попытки...
    (Энергетическая интеграция как фактор обеспечения энергетической безопасности республики Казахстан)
  • Основные определения, положения и понятия в теоретической метрологии
    Фундаментальные понятия величин и процессов измерений В основе метрологии лежат следующие базовые положения. Действительное значение физической величины - значение физической величины, полученное экспериментальным путем с допустимой погрешностью. Оно может быть близко к истинному значению...
    (Метрология, стандартизация и сертификация)
  • Структурно-функциональные составляющие интеллектуальных ресурсов: сравнительный анализ теоретических подходов
    Эффективное управление интеллектуальными ресурсами позволяет учитывать все нематериальные активы, а также выявлять и воздействовать на резервы развития организации. Сегодня способы измерения интеллектуальных ресурсов могут стать универсальными инструментами оценки, как отдельных компаний, так и целых...
    (Интеллектуальные ресурсы организации как индикатор уровня ее компетентности)
  • Тест «проверь себя» (теоретическая часть)
    1. Что влияет на Ваше здоровье? 1. Культура. 2. Образ и условия жизни. 3. Биологические характеристики. 4. Социальная, духовная, экономическая и физическая окружающая среда. 5. Все выше перечисленное. 2. Оценка деятельности сердечно-сосудистой системы определяется по пробе: 1. Ромберга. 2. Руфье. 3....
    (Физическое воспитание детей дошкольного возраста)
  • Загрузка...