Польза натуральных продуктов. Витамины, макроэлементы

Почему необходим выбор стандартного состояния. Стандартные состояния. Химическое равновесие. Обратимые и необратимые реакции

Автор Химическая энциклопедия г.р. Н.С.Зефиров

СТАНДАРТНОЕ СОСТОЯНИЕ в химической термодинамике, состояние системы, выбираемое как состояние отсчета при оценке термодинамическое величин. Необходимость выбора СТАНДАРТНОЕ СОСТОЯНИЕ с. обусловлена тем, что в рамках химический термодинамики не может быть рассчитаны абс. значения энергий Гиббса, химический потенциалов, энтальпий и др. термодинамическое величин для данного вещества; возможен расчет лишь относит. значений этих величин в данном состоянии в сравнении с их значением в СТАНДАРТНОЕ СОСТОЯНИЕ с.

СТАНДАРТНОЕ СОСТОЯНИЕ с. выбирают из соображений удобства расчетов; оно может меняться при переходе от одной задачи к другой. Значения термодинамическое величин в СТАНДАРТНОЕ СОСТОЯНИЕ с. называют стандартными и обозначают обычно нулем в верх. индексе, например G 0 , H 0 , m 0 -соответственно стандартные энергия Гиббса, энтальпия, химический потенциал вещества. Для химический реакции D G 0 , D H 0 , D S 0 равны изменениям соответственно G 0 , H 0 и S 0 реагирующей системы в процессе перехода от исходных веществ в СТАНДАРТНОЕ СОСТОЯНИЕ с. к продуктам реакции в СТАНДАРТНОЕ СОСТОЯНИЕ с.

СТАНДАРТНОЕ СОСТОЯНИЕ с. характеризуется стандартными условиями: давлением p 0 , температурой Т 0 , составом (молярная доля x 0). Комиссия ИЮПАК по термодинамике определила (1975) в качестве о сновного СТАНДАРТНОЕ СОСТОЯНИЕ с. для всех газообразных веществ чистое вещество (х 0 = 1) в состоянии идеального газа с давлением р 0 = 1 атм (1,01 10 5 Па) при любой фиксир. температуре. Для твердых и жидких веществ основное СТАНДАРТНОЕ СОСТОЯНИЕс.-это состояние чистого (х 0 = 1) вещества, находящегося под внешний давлением р 0 = 1 атм. В определение СТАНДАРТНОЕ СОСТОЯНИЕ с. ИЮПАК Т 0 не входит, хотя часто говорят о стандартной температуре, равной 298,15 К.

Мн. газы при давлении 1 атм не могут рассматриваться как идеальный газ. СТАНДАРТНОЕ СОСТОЯНИЕ с. в этих случаях не реальное, а некое гипотетич. состояние. Подобный искусств. выбор СТАНДАРТНОЕ СОСТОЯНИЕ с. объясняется простотой расчетов термодинамическое функций для идеального газа.

Для процесса образования химический соединения из простых веществ в термодинамическое справочниках приводятся стандартные энергии Гиббса, энтальпии, энтропии

Для определения этих величин выбирают некоторые простые вещества, для которых, по определению, выполняются условия: = 0, =0, = 0. В качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. для про стых веществ принимают устойчивое фазовое и химический состояние элемента при данной температуре. Это состояние не всегда совпадает с естественным; так, СТАНДАРТНОЕ СОСТОЯНИЕ с. простого вещества фтора при всех температурах-чистый идеальный газ при 1 атм, состоящий из молекул F 2 ; при этом не учитывается диссоциация F 2 на атомы. СТАНДАРТНОЕ СОСТОЯНИЕ с. может быть разным в различные температурных интервалах. Для Na, например, в интервале от 0 до Т пл (370,86 К) СТАНДАРТНОЕ СОСТОЯНИЕ с. простого вещества-чистый металлич. Na при 1 атм; в интервале от Т пл до T кип (1156,15 К)-чистый жидкий Na при 1 атм; выше 1156,15 К-идеальный газ при 1 атм, состоящий исключительно из атомов Na. Т. обр., стандартная энтальпия образования твердого NaF ниже 370,86 К соответствует изменению энтальпии в реакции Na (тв) + 1 / 2 F 2 = = NaF (тв), а в интервале 370,86-1156,15 К соответствует изменению энтальпии в реакции Na (жидк) + 1 / 2 F 2 = NaF(TB).

СТАНДАРТНОЕ СОСТОЯНИЕ с. иона в водном растворе вводится для возможности пересчета экспериментально определяемых энтальпий растворения D aq Н 0 (Н 2 О) в энтальпии образования химический соединения. Так, если известна стандартная энтальпия растворения в воде КСl, а D Н 0 обр [К + , раствор] и [Сl - , раствор]-соответственно энтальпии образования ионов К + и Сl в СТАНДАРТНОЕ СОСТОЯНИЕ с. в водном растворе, то стандартная энтальпия образования КСl может быть рассчитана по уравению: [КСl, тв] = = - D aq H 0 (Н 2 0) +[К + , раствор] +[Сl - , раствор].

В качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. иона в водном растворе, согласно рекомендациям ИЮПАК, принимают состояние данного иона в гипотетич. одномоляльном водном растворе, в котором для рассматриваемого иона энтальпия равна его энтальпии в бесконечно разбавленый растворе. Кроме того, принимают, что энтальпия образования иона Н + в СТАНДАРТНОЕ СОСТОЯНИЕс., т.е. [Н + , раствор, Н 2 О] равна нулю. В результате появляется возможность получения относительных стандартных энтальпий образования др. ионов в растворе на основе наиболее надежных (ключевых) значений энтальпий образования химический соединений. В свою очередь, полученные значения энтальпий образования ионов в растворе служат для определения неизвестных энтальпий образования химический соединение в тех случаях, когда стандартные энтальпии растворения измерены.

СТАНДАРТНОЕ СОСТОЯНИЕ с. компонентов двух- и многокомпонентных систем вводится как состояние отсчета при расчетах термодинамическое активностей, энергий Гиббса, энтальпий, энтропии смешения (последние три величины в СТАНДАРТНОЕ СОСТОЯНИЕ с. равны нулю). Возможен так называемой симметричный выбор СТАНДАРТНОЕ СОСТОЯНИЕ с., при котором в качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. компонента используется его основное СТАНДАРТНОЕ СОСТОЯНИЕ с., определенное согласно ИЮПАК. Если многокомпонентная система является жидкой, то и в качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. компонентов берется их жидкое состояние. Альтернативой служит антисимметричный выбор СТАНДАРТНОЕ СОСТОЯНИЕ с., когда для растворителя сохраняется СТАНДАРТНОЕ СОСТОЯНИЕ с., выбранное согласно рекомендациям ИЮПАК, а для растворенного вещества А в качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. выбирается его состояние в растворе единичной концентрации, обладающим свойствами бесконечно разбавленый раствора. Выбор СТАНДАРТНОЕ СОСТОЯНИЕ с. в этом случае связан с определенной концентрац. шкалой (молярная доля, молярность, моляльность). Антисимметричный выбор СТАНДАРТНОЕ СОСТОЯНИЕ с. удобен в тех случаях, когда растворенное вещество не существует в данной фазе в чистом виде (например, НCl не существует в виде жидкости при комнатной температуре).

Понятие СТАНДАРТНОЕ СОСТОЯНИЕ с. введено Г. Льюисом в нач. 20 в.

Литература: Льюис Дж., Рендалл М., Химическая термодинамика, пер. с англ., М., 1936; Белоусов В. П., Панов М. Ю., Термодинамика водных растворов неэлектролитов, Л., 1983: Воронин Г.Ф., Основы термодинамики, М., 1987, с. 91, 98, 100. М.В. Коробов.

Химическая энциклопедия. Том 4 >>

Термодинамическими методами невозможно найти абсолютные значения энтальпий и внутренних энергией, а можно определить только их изменения. В то же время при термодинамических расчетах химически реагирующих систем удобно использовать единую систему отсчета. При этом, поскольку энтальпия и внутренняя энергия связаны между собой соотношением , то достаточно ввести систему отсчета лишь для одной энтальпии. Кроме того, для сравнения и систематизации тепловых эффектов химических реакций, которые зависят от физического состояния реагирующих веществ и от условий протекания ХР, вводится понятие стандартного состояния вещества. По рекомендации комиссии по термодинамике Международного союза теоретической и прикладной химии (ИЮПАК) в 1975 году стандартное состояние определено следующим образом:

«Стандартным состоянием для газов является состояние гипотетического идеального газа при давлении в 1 физическую атмосферу (101325 Па). Для жидкостей и твердых веществ стандартным состоянием является состояние чистой жидкости или соответственно чистого кристаллического вещества при давлении в 1физическую атмосферу. Для веществ в растворах за стандартное состояние принято гипотетическое состояние, при котором энтальпия одномолярного раствора (1 моль вещества в 1 кг растворителя) равнялась бы энтальпии раствора при бесконечном разбавлении. Свойства веществ в стандартных состояниях обозначаются надстрочным индексом 0». (Чистым веществом называется вещество, состоящее из одинаковых структурных частиц (атомов, молекул и др.)).

В этом определении говориться о гипотетических состояниях газа и растворенного вещества, поскольку в реальных условиях состояния газов в большей или меньшей степени отличаются от идеального, а состояния растворов - от идеального раствора. Поэтому при использовании термодинамических свойств веществ в стандартных состояниях для реальных условий вводятся поправки на отклонение этих свойств от реальных. Если эти отклонения невелики, то поправки можно не вводить.

В справочниках термодинамические величины обычно приводятся при стандартных условиях: давлении р 0 =101325Па и температуре Т 0 =0К или Т 0 =298,15К (25 0 С). При создании таблиц полных энтальпий веществ за начало отсчета энтальпий также было принято их стандартное состояние при температуре Т 0 =0К или Т 0 =298,15К.

У веществ , являющихся чистыми химическими элементами в наиболее устойчивом фазовом состоянии при р 0 =101325Па и температуре начала отсчета энтальпий Т 0 , принимают значение энтальпий, равное нулю :
. (Например, для веществ в газообразном состоянии: О 2 , N 2 , H 2 , Cl 2 , F 2 и др., для С (графит) и металлов (твердые кристаллы)).

Для химических соединений (СО 2 , Н 2 О и др.) и для веществ, которые, являясь чистыми химическими элементами, не находятся в наиболее устойчивом состоянии (O, N и др.) энтальпия при р 0 =101325Па и Т 0 не равна нулю :
.

Энтальпия химических соединений при р 0 и Т 0 полагается равной тепловому эффекту образования их из чистых химических элементов при этих параметрах, т.е.
. Так, при Т 0 =0К:
и при Т 0 =298,15К:
.

Энтальпия любого вещества при температуре Т будет равна количеству теплоты, которое необходимо подвести в изобарном процессе, чтобы из чистых химических элементов при температуре Т 0 получить данное вещество и нагреть его от температуры Т 0 до температуры Т , т.е. формула для расчета энтальпии любого вещества имеет вид:


, или при более компактной записи имеем:

,

где верхний индекс «о» означает, что вещество находится в стандартном состоянии при р 0 =101325Па;
- энтальпия образования вещества при температуреТ 0 из чистых химических элементов;
=
– избыточная энтальпия, связанная с теплоемкостью вещества,- полная энтальпия, учитывающая энтальпию образования вещества.

Для Т 0 = 0:

,

Для Т = 298,15 К:

Схема расчета энтальпии при температуре Т может быть представлена в виде:

В справочнике для различных индивидуальных веществ представлены величины:
и избыточная энтальпия
для различных температурТ .

Так как избыточная энтальпия
в таблицах индивидуальных веществ не приводится, то к левой части выражения для
приТ 0 =298,15К необходимо прибавить и вычесть теплоту образования вещества при температуреТ 0 =0К. Тогда получим избыточную энтальпию
, которая приводится в таблицах, и дополнительный член
, равный разности теплот образования при температурахТ 0 =298К и Т 0 =0К; т.е. . Тогда имеем:

Полные энтальпии, рассчитанные с использованием соотношений для Т 0 =0К и Т 0 =298,15К имеют одинаковые численные значения для данного вещества при данной температуре Т .

      Приведенная энергия Гиббса и ее связь с другими термодинамическими величинами

Приведенная энергия Гиббса для 1 моля вещества при стандартном состоянии вводится следующим соотношением:

[Дж/мольК] (1)

где
- мольная свободная энергия Гиббса при стандартном давлении, Дж/моль;- энтальпия образования вещества приТ =0 К из простых химических элементов:

является функцией состояния и зависит только от температуры.

Возьмем производную от () по температуре приp =const:

(2)

В уравнении (2) производная от энергии Гиббса по температуре равна

, (3)

а величина по определению равна

(4)

Подставляя (3) и (4) в (2) получим

(5)

(6)

Первая производная от приведенной энергии Гиббса по температуре дает избыточную энтальпию. Для практических задач гораздо удобнее брать производную по логарифму температуры, учитывая, что dT =Td lnT . Тогда имеем

(7)

Запишем выражение (6) в виде
(8)

Вторая производная от по температуре прир =const дает теплоемкость

=
(9)

или
(10)

Зависимости (6), (7), (9) и (10) для (
)/Т и используются для получения аппроксимаций по температуре термодинамических свойств индивидуальных веществ. Молярная энтропия при стандартном давлении также выражается через приведенную энергию Гиббса:

(11)

      Представление термодинамических свойств индивидуальных веществ в справочной литературе

В справочнике под редакцией В.П. Глушко для 1-го моля каждого индивидуального вещества в стандартном состоянии в зависимости от температуры приводятся таблицы величин в интервале t 0 от 100К до 6000К:

- изобарная теплоемкость, Дж/мольК;

- приведенная энергия Гиббса, Дж/мольК;

- энтропия, Дж/мольК;

- избыточная энтальпия, кДж/моль;

, где К 0 – константа равновесия ХР распада данного вещества В на газообразные атомы, безразмерная величина. Формула распада вещества:
, где- число атомовв молекуле веществаВ .

Например:
.

Приводятся величины:

- тепловой эффект реакции распада вещества В на газообразные атомы при Т 0 =0К, кДж/моль;

- энтальпия образования вещества из чистых химических элементов (тепловой эффект образования) при Т 0 =0К, кДж/моль;

- энтальпия образования вещества при Т 0 =298,15К, кДж/моль;

М - относительная молекулярная масса, безразмерная величина;

- ядерная составляющая энтропии вещества, которая зависит от изотопного состава вещества и не изменяется в процессе ХР, Дж/мольК. Величина не влияет наВ справочнике практические функции приводятся без учета.

В справочнике приводятся аппроксимации приведенной энергии Гиббса в зависимости от температуры в виде многочлена для каждого индивидуального вещества.

Аппроксимация (Т ) в зависимости от температуры представляется в виде многочлена:

где x = T ·10 -4 K; φ , φ n (n =-2, -1, 0, 1, 2, 3)– коэффициенты аппроксимации для диапазона температур T min Т T max ,(T min = 500К, T max =6000К).

С помощью коэффициентов аппроксимации φ , φ n можно рассчитать избыточную энтальпию и теплоемкость вещества:

а также мольную энтропию:
Для полного задания всех термодинамических свойств индивидуальных веществ химически реагирующих систем при температуреТ для расчетов на ЭВМ при выборе Т 0 =298,15К необходимо ввести следующие величины:

т.е. всего 13 параметров, где .

При выборе Т 0 = 0К величины
и
из списка необходимо исключить. Тогда останется 11 параметров:
(7 коэффициентов)



. Таким образом, при термодинамических расчетах ракетных и авиационных двигателей целесообразно выбирать температуру начала отсчета энтальпийТ 0 =0К.

Общепринятые сокращения

г – газ, газообразное состояние вещества

ж – жидкость, жидкое состояние вещества

т – твёрдое состояние вещества (в настоящей методичке т – эквивалентно кристаллическому состоянию, так как некристаллическое состояние твёрдого вещества не рассматривается в рамках программы)

aq – растворённое состояние, причем растворитель – вода (от слова aqueous – водный)

ЭДС – электродвижущая сила

Комментарии

Стандартное состояние в термодинамике. Стандартные состояния приняты следующие:

для газообразного вещества, чистого или в газовой смеси, – гипотетическое состояние чистого вещества в газовой фазе, в котором оно имеет свойства идеального газа и стандартное давление р °. В настоящем руководстве принято р ° = 1.01325×10 5 Па (1 атм).

для чистой жидкой или твёрдой фазы, а так же для растворителя жидкого раствора – состояние чистого вещества в соответствующем агрегатном состоянии под стандартным давлением р °.

для растворенного вещества в твёрдом или жидком растворе – гипотетическое состояние этого вещества в растворе со стандартной концентрацией С °, имеющем свойства бесконечно разбавленного раствора (по данном веществу) под стандартным давлением р °. Стандартная концентрация принята С ° = 1 моль/дм 3 .

Выбор стехиометрических коэффициентов. Стехиометрические коэффициенты химической реакции показывают, в каком молярном отношении реагируют между собой данные вещества. Например, в реакции А + В = Z стехиометрические коэффициенты реагирующих веществ равны между собой (по абсолютной величине), из чего следует, что 1 моль А реагирует без остатка с 1 моль В с образованием 1 моль Z. Смысл этой записи не изменится, если выбрать любые другие равные между собой коэффициенты. Например, уравнение 2А + 2В = 2Z отвечает тому же стехиометрическому соотношению между реагирующими веществами. Поэтому в общем случае коэффициенты n i любой реакции определены с точностью до произвольного общего множителя. Однако в разных разделах физической химии приняты разные условности в отношении выбора этого множителя.

В термохимии, в реакциях образования веществ из простых веществ, коэффициенты выбирают так, чтобы перед образующимся веществом стоял коэффициент 1. Например, для образования иодида водорода:

1/2H 2 + 1/2I 2 = HI

В химической кинетике коэффициенты выбирают так, чтобы они совпадали, если это возможно, с порядками реакции по соответствующим реагентам. Например, образование HI имеет первый порядок по H 2 и первый порядок по I 2 . Поэтому, реакция записывается в виде:

H 2 + I 2 ® 2HI

В термодинамике химических равновесий выбор коэффициентов, в общем случае, произволен, но в зависимости от вида реакции предпочтение может быть отдано тому или иному выбору. Например, для выражения константы равновесия кислотной диссоциации принято выбирать коэффициент перед символом кислоты равный 1. В частности, для кислотной диссоциации иодида водорода выбирают

HI ƒ H + + I –

(коэффициент перед HI равен 1).

Обозначения концентраций. При одном и том же символе, концентрация или содержание компонента в смеси может иметь разный смысл. Концентрация может быть равновесной (та, которая достигается при равновесии), текущей (та, которая существует в данный момент времени или на данной стадии процесса) и валовой или "аналитической". Эти концентрации могут различаться. Например, если приготовить раствор уксусного ангидрида (СН 3 СО) 2 О в воде, взяв 1 моль 100%-ого уксусного ангидрида и разбавив его водой до 1 литра, то полученный раствор будет иметь валовую или аналитическую концентрацию С = 1 моль/л (СН 3 СО) 2 О. Фактически, уксусный ангидрид подвергается необратимому гидролизу до уксусной кислоты (СН 3 СО) 2 О + Н 2 О ® 2СН 3 СООН, поэтому его текущая концентрация уменьшается от 1 моль/л в начальный момент времени до равновесной концентрации приблизительно 0 моль/л по окончанию реакции. С другой стороны, в расчёте на полный гидролиз ангидрида, можно сказать, что валовая концентрация раствора составляет 2 моль/л СН 3 СООН (безотносительно к стадии процесса гидролиза). Однако продукт реакции подвержен кислотной диссоциации СН 3 СООН ƒ СН 3 СОО – + Н + , так что реальные концентрации в растворе, включая реальную концентрацию СН 3 СООН, не равны ни одной из валовых. Реальные концентрации СН 3 СООН, СН 3 СОО – и Н + при равновесии называются равновесными. Химики часто используют одно и то же обозначение С для всех этих видов концентраций в предположении, что смысл обозначения ясен из контекста. Если хотят подчеркнуть различие, то для молярных концентраций обычно используют следующие обозначения: С – валовая или аналитическая концентрация, [А] – текущая или равновесная концентрация компонента А, и (иногда) [А] е – равновесная концентрация компонента А. Этот индекс делает написание констант равновесий, типа

ЭЛЕМЕНТЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ И КИНЕТИКИ

Термодинамические системы: определение, классификация систем (изолированные, закрытые, открытые) и процессов (изотермические, изобарные, изохорные). Стандартное состояние.

Термодинамика – это наука, изучающая общие закономерности протекания процессов, сопровождающихся выделением, поглощением и превращением энергии.

Химическая термодинамика изучает взаимные превращения химической энергии и других ее форм – тепловой, световой, электрической и т.д., устанавливает количественные законы этих переходов, а также позволяет предсказать устойчивость веществ при заданных условиях и их способность вступать в те или иные химические реакции. Термохимия, являющаяся разделом химической термодинамики, изучает тепловые эффекты химических реакций.

Объект термодинамического рассмотрения называют термодинамической системой или просто системой.

Система – любой объект природы, состоящий из большого числа молекул (структурных единиц) и отделённый от других объектов природы реальной или воображаемой граничной поверхностью (границей раздела).

Состояние системы – совокупность свойств системы, позволяющих определить систему с точки зрения термодинамики.

Типы термодинамических систем:

I. По характеру обмена веществом и энергией с окружающей средой:

Изолированная система – не обменивается со средой ни веществом, ни энергией (Δm = 0; ΔE = 0) - термос, сосуд Дьюара.

Адиабатически изолированная - Невозможен обмен с внешней средой тепловой энергией, возможен обмен веществом.

2. Закрытая система – не обменивается со средой как веществом, но может обмениваться энергией (закрытая колба с реагентами).

3. Открытая система – может обмениваться со средой как веществом, так и энергией (человеческое тело).

Одна и та же система может находиться в различных состояниях. Каждое состояние системы характеризуется определенным набором значений термодинамических параметров. К термодинамическим параметрам относятся температура, давление, плотность, концентрация и т.п. Изменение хотя бы только одного термодинамического параметра приводит к изменению состояния системы в целом. При постоянстве термодинамических параметров во всех точках системы (объема) термодинамическое состояние системы называют равновесным.

II. По агрегатному состоянию:

1. Гомогенная – отсутствие резких изменений физических и химических свойств при переходе от одних областей системы к другим (состоят из одной фазы).

2. Гетерогенная – две или более гомогенные системы в одной (состоит из двух или нескольких фаз).

Фаза – это часть системы, однородная во всех точках по составу и свойствам и отделенная от других частей системы поверхностью раздела. Примером гомогенной системы может служить водный раствор. Но если раствор насыщен и на дне сосуда есть кристаллы солей, то рассматриваемая система – гетерогенна (есть граница раздела фаз). Другим примером гомогенной системы может служить простая вода, но вода с плавающим в ней льдом – система гетерогенная.

Фазовый переход - превращения фаз (таяние льда, кипение воды).

Термодинамический процесс - переход термодинамической системы из одного состояния в другое, который всегда связан с нарушением равновесия системы.

Например, чтобы уменьшить объем газа, заключенного в сосуде, нужно вдвинуть поршень. При этом газ будет сжиматься и в первую очередь повысится давление газа вблизи поршня - равновесие будет нарушено. Нарушение равновесия будет тем значительнее, чем быстрее перемещается поршень. Если двигать поршень очень медленно, то равновесие нарушается незначительно и давление в разных точках мало отличается от равновесного значения, отвечающего данному объему газа. В пределе при бесконечно медленном сжатии давление газа будет иметь в каждый момент времени определенное значение. Следовательно, состояние газа все время будет равновесным, так что бесконечно медленный процесс окажется состоящим из последовательности равновесных состояний. Такой процесс называется равновесным или квазистатическим .

Бесконечно медленный процесс является абстракцией. Практически можно считать квазистатическим процесс, протекающий настолько медленно, что отклонения значений параметров от равновесных пренебрежимо малы. При изменении направления равновесного процесса (например, замене сжатия газа расширением) система будет проходить через те же равновесные состояния, что и при прямом ходе, но в обратной последовательности. Поэтому равновесные процессы называют также обратимыми . Процесс, при котором система после ряда изменений возвращается в исходное состояние, называется круговым процессом или циклом . Понятия равновесного состояния и обратимого процесса играют большую роль в термодинамике. Все количественные выводы термодинамики применимы только к равновесным состояниям и обратимым процессам.

Классификация термодинамических процессов:

Изотермический - постоянная температура T = const

Изобарный - постоянное давление – p = const

Изохорный - постоянный объем – V = const

Адиабатический - отсутствие теплообмена между системой и внешней средой – dQ =0

Стандартное состояние - в химической термодинамике условно принятые состояния индивидуальных веществ и компонентов растворов при оценке термодинамических величин .

Необходимость введения «стандартных состояний» связана с тем, что термодинамические закономерности не описывают достаточно точно поведение реальных веществ, когда количественной характеристикой служит давление или концентрация . Стандартные состояния выбирают из соображений удобства расчётов, и они могут меняться при переходе от одной задачи к другой.

В стандартных состояниях значения термодинамических величин называют «стандартными» и обозначают нулем в верхнем индексе, например: G0, H0, m0 - это соответственно стандартные энергия Гиббса , энтальпия , химический потенциал вещества. Вместо давления в термодинамических уравнениях для идеальных газов и растворов используют летучесть, а вместо концентрации - активность.

Комиссия по термодинамике международного союза теоретической и прикладной химии (ИЮПАК) определила, что стандартное состояние - это состояние системы, условно выбранное в качестве стандарта для сравнения. Комиссия предложила следующие стандартные состояния веществ:

Для газовой фазы - это (предполагаемое) состояние химически чистого вещества в газовой фазе под стандартным давлением 100 кПа (до 1982 года - 1 стандартная атмосфера, 101 325 Па, 760 мм ртутного столба), подразумевая наличие свойств идеального газа .

Для беспримесной фазы, смеси или растворителя в жидком или твёрдом агрегатном состоянии - это состояние химически чистого вещества в жидкой или твёрдой фазе под стандартным давлением.

Для раствора - это (предполагаемое) состояние растворённого вещества со стандартной моляльностью 1 моль/кг, под стандартным давлением или стандартной концентрации, исходя из условий, что раствор неограниченно разбавлен.

Для химически чистого вещества - это вещество в чётко определённом агрегатном состоянии под чётко определённым, но произвольным, стандартным давлением.

В определение стандартного состояния ИЮПАК не входит стандартная температура, хотя часто говорят о стандартной температуре, которая равна 25 °C (298,15 К).

7. Скорость реакции: средняя и истинная. Закон действующих масс.

Термодинамические системы: определение, классификация систем (изолированные, закрытые, открытые) и процессов (изотермические, изобарные, изохорные). Стандартное состояние.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Зависимость скорости реакции от концентрации. Молекулярность элементарного акта реакции. Порядок реакции. Кинетические уравнения реакций первого и нулевого порядков. Период полупревращения.

Зависимость скорости реакции от температуры. Температурный коэффициент скорости реакции и его особенности для биохимических процессов. Энергия активации.

Катализ гомогенный и гетерогенный. Ферментативный катализ. Уравнение Михаэлиса-Ментен.

Химическое равновесие. Обратимые и необратимые реакции.

Податок на майно. Туристичний збір. Збір за місце для паркування транспортних засобів

Платниками податку є фізичні та юридичні особи, в тому числі нерезиденти, які є власниками об\"єктів житлової нерухомості. Платниками збору є юридичні особи, їх філії (відділення, представництва)

Сельское хозяйство

Классификация культур по ботаническим и биологическим признакам. Формирование структуры посевных площадей. Агротехника. Биологические и ботанические особенности.

Основи виробництва. Практичні роботи

Навчальний посібник призначений для студентів відділення трудового навчання зі спеціальності 5.01010301 «Технологічна освіта». В посібнику викладені відомості з тринадцяти типових практичних робіт і дозволяють отримали міцні і різносторонні знання по основним питанням: будови, властивостей і способів обробки матеріалів.

Матеріальна відповідальність за посягання на майно і особу підприємця

Елементи та рівні системи безпеки підприємця. Начальника служби безпеки. Забезпечення режиму доступу. Екстремальна психологія.

Курсова робота З предмету «Основи роботи на ПК» На тему: Об’єкти ОС Windows. Київ 2015

Биомедицинская значимость темы

Термодинамика представляет собой раздел физической химии, изучающий любые макроскопические системы, изменения состояния которых связано с передачей энергии в форме теплоты и работы.

Химическая термодинамика является теоретической основой биоэнергетики – науки о превращениях энергии в живых организмах и специфических особенностях превращения одних видов энергии в другие в процессе жизнедеятельности. В живом организме существует тесная взаимосвязь между процессами обмена веществ и энергии. Обмен веществ является источником энергии всех жизненных процессов. Осуществление любых физиологических функций (движение, поддержание постоянства температуры тела, выделение пищеварительных соков, синтез в организме различных сложных веществ из более простых и т.п.) требует затраты энергии. Источником всех видов энергии в организме являются питательные вещества (белки, жиры, углеводы), потенциальная химическая энергия которых в процессе обмена веществ превращается в другие виды энергии. Основным путем освобождения химической энергии, необходимой для поддержания жизнедеятельности организма и осуществления физиологических функций, являются окислительные процессы.

Химическая термодинамика позволяет установить связь между энергетическими затратами при выполнении человеком определенной работы и калорийностью питательных веществ, дает возможность понять энергетическую сущность биосинтетических процессов, протекающих за счет энергии, высвобождаемой при окислении питательных веществ.

Знание стандартных термодинамических величин относительно небольшого числа соединений позволяет производить термохимические расчеты для энергетической характеристики различных биохимических процессов.

Применение термодинамических методов дает возможность количественно оценить энергетику структурных превращений белков, нуклеиновых кислот, липидов и биологических мембран.

В практической деятельности врача термодинамические методы наиболее широко используются для определения интенсивности основного обмена при различных физиологических и патологических состояниях организма, а также для определения калорийности пищевых продуктов.

Задачи химической термодинамики

1. Определение энергетических эффектов химических и физико–химических процессов.

2. Установление критериев самопроизвольного протекания химических и физико–химических процессов.

3. Установление критериев равновесного состояния термодинамических систем.

Основные понятия и определения

Термодинамическая система

Тело или группа тел, отделенных от окружающей среды реальной или воображаемой поверхностью раздела, называют термодинамической системой.


В зависимости от способности системы обмениваться с окружающей средой энергией и веществом различают изолированные, закрытые и открытые системы.

Изолированной системой называют систему, которая не обменивается с окружающей средой ни веществом, ни энергией.

Систему, которая обменивается с окружающей средой энергией и не обменивается веществом, называют закрытой .

Открытой системой называют систему, обменивающуюся с окружающей средой и веществом, и энергией.

Состояние системы, стандартное состояние

Состояние системы определяется совокупностью ее физических и химических свойств. Каждое состояние системы характеризуется определенными величинами этих свойств. Если эти свойства изменяются, то изменяется и состояние системы, если же свойства системы не изменяются со временем, то система находится в состоянии равновесия.

Для сравнения свойств термодинамических систем необходимо точно указать их состояние. С этой целью введено понятие – стандартное состояние, за которое для индивидуальной жидкости или твердого тела принимается такое физическое состояние, в котором они существуют при давлении в 1 атм (101315 Па) и данной температуре.

Для газов и паров стандартное состояние отвечает гипотетическому состоянию, в котором газ при давлении в 1 атм подчиняется законам идеальных газов, при данной температуре.

Величины, относящиеся к стандартному состоянию, пишутся с индексом «о» и нижним индексом указывается температура, чаще всего это 298К.

Уравнение состояния

Уравнение, устанавливающее функциональную зависимость между величинами свойств, определяющих состояние системы, называют уравнением состояния.

Если известно уравнение состояния системы, то для описания ее состояния не обязательно знать численные значения всех свойств системы. Так, например, уравнение Клапейрона–Менделеева является уравнением состояния идеального газа:

где Р – давление, V – объем, n – число молей идеального газа, Т – его абсолютная температура и R– универсальная газовая постоянная.

Из уравнения следует, что для определения состояния идеального газа достаточно знать численные значения любых трех из четырех величин Р,V,n,T.

Функции состояния

Свойства, величины которых при переходе системы из одного состояния в другое зависят только от начального и конечного состояния системы и не зависят от пути перехода, получили название функций состояния. К ним относятся, например, давление, объем, температура системы.

Процессы

Переход системы из одного состояния в другое называют процессом. В зависимости от условий протекания различают следующие виды процессов.

Круговой или циклический – процесс, в результате протекания которого, система возвращается в исходное состояние. По завершении кругового процесса изменения любой функции состояния системы равны нулю.

Изотермический – процесс, протекающий при постоянной температуре.

Изобарный – процесс, протекающий при постоянном давлении.

Изохорный – процесс, при котором объем системы остается постоянным.

Адиабатический – процесс, происходящий без теплообмена с окружающей средой.

Равновесный – процесс, рассматриваемый как непрерывный ряд равновесных состояний системы.

Неравновесный – процесс, при котором система проходит через неравновесные состояния.

Обратимый термодинамический процесс – процесс, после которого система и взаимодействующие с ней системы (окружающая среда) могут возвратиться в начальное состояние.

Необратимый термодинамический процесс – процесс, после которого система и взаимодействующие с ней системы (окружающая среда) не могут возвратиться в начальное состояние.

Более подробно последние понятия рассмотрены в разделе «Термодинамика химического равновесия».

Загрузка...